login
A099927
Pellonomial triangle P(k,n) read by rows.
12
1, 1, 1, 1, 2, 1, 1, 5, 5, 1, 1, 12, 30, 12, 1, 1, 29, 174, 174, 29, 1, 1, 70, 1015, 2436, 1015, 70, 1, 1, 169, 5915, 34307, 34307, 5915, 169, 1, 1, 408, 34476, 482664, 1166438, 482664, 34476, 408, 1, 1, 985, 200940, 6791772, 39618670, 39618670, 6791772, 200940, 985, 1
OFFSET
0,5
COMMENTS
Also (signed) coefficients of solutions to 0 = Sum[i=0..k+1, x(i)*Pell(m+i)^k ].
Sagan and Savage give two combinatorial interpretations for entry T(n,k) in terms of statistics on integer partitions fitting inside a k x (n-k) rectangle. They also relate the values T(n,k) to q-binomial coefficients evaluated at q = -(3 + 2*sqrt(2)). - Peter Bala, Mar 15 2013
LINKS
Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
S. Falcon, On The Generating Functions of the Powers of the K-Fibonacci Numbers, Scholars Journal of Engineering and Technology (SJET), 2014; 2 (4C):669-675.
FORMULA
P(k, n) = Prod[i=k-n+1..k, Pell(i)] / Prod[i=1..n, Pell(i)], with Pell(n) = A000129(n).
From Peter Bala, Mar 15 2013: (Start)
In terms of the Pell numbers, Pell(n) = A000129(n), the triangle entry T(n,k) = [n]!/([k]!*[n-k]!), where [n]! := Pell(1)*...*Pell(n) for n >= 1, with the convention [0]! = 1.
Define E(x) = 1 + sum {n>=0} x^n/[n]!. Then a generating function for this triangle is E(z)*E(x*z) = 1 + (1 + x)*z + (1 + 2*x + x^2)*z^2/[2]! + (1 + 5*x + 5*x^2 + x^3)*z^3/[3]! + ... (End)
MAPLE
p:= proc(n) p(n):= `if`(n<2, n, 2*p(n-1)+p(n-2)) end:
f:= proc(n) f(n):= `if`(n=0, 1, p(n)*f(n-1)) end:
T:= (n, k)-> f(n)/(f(k)*f(n-k)):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Aug 15 2013
MATHEMATICA
p[n_] := p[n] = If[n<2, n, 2*p[n-1] + p[n-2]]; f[n_] := f[n] = If[n == 0, 1, p[n] * f[n-1]]; T[n_, k_] := f[n]/(f[k]*f[n-k]); Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)
CROSSREFS
Columns include A000129, A084158, A099930, A099931.
Row sums are in A099928. Central column is in A099929.
Cf. A010048.
Sequence in context: A008518 A264862 A176420 * A139332 A187617 A306344
KEYWORD
nonn,tabl
AUTHOR
Ralf Stephan, Nov 03 2004
STATUS
approved