OFFSET
0,1
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 57.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..4767
É. Czabarka, R. Flórez, and L. Junes, A Discrete Convolution on the Generalized Hosoya Triangle, Journal of Integer Sequences, 18 (2015), #15.1.6.
Sergio Falcon, Half self-convolution of the k-Fibonacci sequence, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 3, 96-106.
Tamás Szakács, Convolution of second order linear recursive sequences. II. Commun. Math. 25, No. 2, 137-148 (2017). See remark 4.
Tamás Szakács, Linear recursive sequences and factorials, Ph. D. Thesis, Univ. Debrecen (Hungary, 2024). See p. 37.
Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
FORMULA
a(n) = (n+1)*L(n) + 2F(n+1) = Sum_{k=0..n} L(k)*L(n-k).
G.f.: (2-x)^2/(1-x-x^2)^2, corrected Aug 23 2022
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4), a(0)=4, a(1)=4, a(2)=13, a(3)=22. - Harvey P. Dale, Mar 06 2012
MATHEMATICA
Table[Sum[LucasL[k]LucasL[n-k], {k, 0, n}], {n, 0, 40}] (* or *) LinearRecurrence[ {2, 1, -2, -1}, {4, 4, 13, 22}, 40] (* Harvey P. Dale, Mar 06 2012 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Nov 01 2004
STATUS
approved