OFFSET
0,1
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 56.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Mohammad K. Azarian, Identities Involving Lucas or Fibonacci and Lucas Numbers as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 45, 2012, pp. 2221-2227.
Toufik Mansour, A formula for the generating functions of powers of Horadam's sequence, Australas. J. Combin. 30 (2004) 207-212.
Index entries for linear recurrences with constant coefficients, signature (5,15,-15,-5,1).
FORMULA
a(n) = L(4*n) + 4*(-1)^n*L(2*n) + 6.
a(n) = L(n-2)*L(n-1)*L(n+1)*L(n+2) + 25, for n >=1.
G.f.: (16-79*x-164*x^2+76*x^3+x^4)/((1-x)*(1+3*x+x^2)*(1-7*x+x^2)). [See Mansour p. 207] - R. J. Mathar, Oct 26 2008
a(0)=16, a(1)=1, a(2)=81, a(3)=256, a(4)=2401, a(n) = 5*a(n-1) + 15*a(n-2) - 15*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Jul 04 2014
Sum_{i=0..n} a(i) = 11 + 6*n + 4*(-1)^n*F(2*n+1) + F(4*n+2), for F = A000045. - Adam Mohamed and Greg Dresden, Jul 02 2024
MATHEMATICA
LucasL[Range[0, 20]]^4 (* or *) LinearRecurrence[{5, 15, -15, -5, 1}, {16, 1, 81, 256, 2401}, 21] (* Harvey P. Dale, Jul 04 2014 *)
CoefficientList[Series[(16 - 79 x - 164 x^2 + 76 x^3 + x^4)/((1 - x) (1 + 3*x+x^2)*(1-7*x+x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 21 2017 *)
PROG
(Magma) [ Lucas(n)^4 : n in [0..120]]; // Vincenzo Librandi, Apr 14 2011
(PARI) for(n=0, 30, print1( (fibonacci(n+1) + fibonacci(n-1))^4, ", ")) \\ G. C. Greubel, Dec 21 2017
(PARI) x='x+O('x^30); Vec((16-79*x-164*x^2+76*x^3+x^4)/((1-x)*(1+3*x+x^2)*(1-7*x+x^2))) \\ G. C. Greubel, Dec 21 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Ralf Stephan, Nov 01 2004
STATUS
approved