login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A099921 a(n) = 5*Fibonacci(n)^2. 1
5, 5, 20, 45, 125, 320, 845, 2205, 5780, 15125, 39605, 103680, 271445, 710645, 1860500, 4870845, 12752045, 33385280, 87403805, 228826125, 599074580, 1568397605, 4106118245, 10749957120, 28143753125, 73681302245, 192900153620, 505019158605, 1322157322205 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 53.

LINKS

Matthew House, Table of n, a(n) for n = 1..2380

Index entries for linear recurrences with constant coefficients, signature (2,2,-1).

FORMULA

a(n) = Lucas(n)^2 - 4(-1)^n.

G.f.: x*(5-5*x) / ((1+x)*(1-3*x+x^2)).

a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3) for n > 3. - Matthew House, Jan 13 2017

a(n) = ((3-sqrt(5))/2)^n + ((3+sqrt(5))/2)^n - 2*(-1)^n. - Colin Barker, Jan 14 2017

a(n) = 2*Fibonacci(2*n+1) - Fibonacci(2*n) - 2*(-1)^n. - Vincenzo Librandi, Sep 14 2017

MAPLE

A099921:=n->5*combinat[fibonacci](n)^2: seq(A099921(n), n=1..50); # Wesley Ivan Hurt, Sep 16 2017

MATHEMATICA

5*Fibonacci[Range[30]]^2 (* Harvey P. Dale, Feb 24 2015 *)

LinearRecurrence[{2, 2, -1}, {5, 5, 20}, 30] (* Vincenzo Librandi, Sep 14 2017 *)

PROG

(PARI) a(n) = 5*fibonacci(n)^2; \\ Michel Marcus, Jan 14 2017

(PARI) Vec(x*(5-5*x) / ((1+x)*(1-3*x+x^2)) + O(x^40)) \\ Colin Barker, Jan 14 2017

(MAGMA) [5*Fibonacci(n)^2: n in [1..30]]; // Vincenzo Librandi, Sep 14 2017

CROSSREFS

Equals 5 * A007598(n).

Cf. A000045 (Fibonacci numbers).

Sequence in context: A302176 A094338 A205882 * A139470 A154640 A154643

Adjacent sequences:  A099918 A099919 A099920 * A099922 A099923 A099924

KEYWORD

nonn,easy

AUTHOR

Ralf Stephan, Nov 01 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 10:37 EDT 2019. Contains 327129 sequences. (Running on oeis4.)