login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A187617 Array T(m,n) read by antidiagonals: number of domino tilings of the 2m X 2n grid (m>=0, n>=0). 8
1, 1, 1, 1, 2, 1, 1, 5, 5, 1, 1, 13, 36, 13, 1, 1, 34, 281, 281, 34, 1, 1, 89, 2245, 6728, 2245, 89, 1, 1, 233, 18061, 167089, 167089, 18061, 233, 1, 1, 610, 145601, 4213133, 12988816, 4213133, 145601, 610, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

A099390 is the main entry for this problem.

The even-indexed rows and columns of the square array in A187596.

Row (and column) 2 is given by A122367. - Nathaniel Johnston, Mar 22 2011

LINKS

Alois P. Heinz, Antidiagonals n = 0..26, flattened

N. Allegra, Exact solution of the 2d dimer model: Corner free energy, correlation functions and combinatorics, arXiv:1410.4131 [cond-mat.stat-mech], 2014. See Table 1.

Index entries for sequences related to dominoes

EXAMPLE

The array begins:

1       1       1       1       1       1       1       1       ...

1       2       5       13      34      89      ...

1       5       36      281     2245    ...

1       13      281     6728    ...

1       34      2245    ...

1       89      ...

...

MAPLE

ft:=(m, n)->

2^(m*n/2)*mul( mul(

(cos(Pi*i/(n+1))^2+cos(Pi*j/(m+1))^2), j=1..m/2), i=1..n/2);

T:=(m, n)->round(evalf(ft(m, n), 300));

MATHEMATICA

T[m_, n_] := Product[2(2 + Cos[(2j Pi)/(2m+1)] + Cos[(2k Pi)/(2n+1)]), {j, 1, m}, {k, 1, n}];

Table[T[m-n, n] // Round, {m, 0, 8}, {n, 0, m}] // Flatten (* Jean-Fran├žois Alcover, Aug 05 2018 *)

CROSSREFS

Cf. A187596, A099390. Main diagonal is A004003. Second and third rows give A001519, A188899.

Sequence in context: A176420 A099927 A139332 * A306344 A128612 A284731

Adjacent sequences:  A187614 A187615 A187616 * A187618 A187619 A187620

KEYWORD

nonn,tabl

AUTHOR

N. J. A. Sloane, Mar 11 2011

EXTENSIONS

More terms from Nathaniel Johnston, Mar 22 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 26 04:32 EDT 2019. Contains 321481 sequences. (Running on oeis4.)