login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084158 a(n) = A000129(n)*A000129(n+1)/2. 16
0, 1, 5, 30, 174, 1015, 5915, 34476, 200940, 1171165, 6826049, 39785130, 231884730, 1351523251, 7877254775, 45912005400, 267594777624, 1559656660345, 9090345184445, 52982414446326, 308804141493510, 1799842434514735 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

May be called Pell triangles.

REFERENCES

S. Falcon, On the Sequences of Products of Two k-Fibonacci Numbers, American Review of Mathematics and Statistics, March 2014, Vol. 2, No. 1, pp. 111-120.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..500

P. Barry, Symmetric Third-Order Recurring Sequences, Chebyshev Polynomials, and Riordan Arrays, JIS 12 (2009) 09.8.6

Index entries for linear recurrences with constant coefficients, signature (5,5,-1).

FORMULA

a(n) = ((sqrt(2)+1)^(2*n+1)-(sqrt(2)-1)^(2*n+1)-2(-1)^n)/16.

a(n) = 5*a(n-1) + 5*a(n-2) - a(n-3). - Mohamed Bouhamida (bhmd95(AT)yahoo.fr), Sep 02 2006; corrected by Antonio Alberto Olivares, Mar 29 2008

a(n) = (-1/8)*(-1)^n + (( sqrt(2)+1)/16)*(3+2*sqrt(2))^n + ((-sqrt(2)+1)/16)*(3-2*sqrt(2))^n. - Antonio Alberto Olivares, Mar 30 2008

(a(n)-a(n-1))^(1/2) = A000129(n). - Antonio Alberto Olivares, Mar 30 2008

O.g.f.: x/((1+x)(x^2-6*x+1)). - R. J. Mathar, May 18 2008

a(n) = A041011(n)*A041011(n+1). - R. K. Guy, May 18 2008

a(n) = 6*a(n-1)-a(n-2)-(-1)^n. a(n)=7*(a(n-1)-a(n-2))+a(n-3)-2*(-1)^n. - Mohamed Bouhamida (bhmd95(AT)yahoo.fr), Aug 30 2008

In general, for n>k+1, a(n+k) = A003499(k+1)*a(n-1) - a(n-k-2) - (-1)^n A000129(k+1)^2. - Charlie Marion, Jan 04 2012

For n>0, a(2n-1)*a(2n+1) = oblong(a(2n)); a(2n)*a(2n+2) = oblong(a(2n+1)-1). - Charlie Marion, Jan 09 2012

a(n) = A046729(n)/4. - Wolfdieter Lang, Mar 07 2012

a(n) = sum of squares of first n Pell numbers A000129 (A079291). - N. J. A. Sloane, Jun 18 2012

MAPLE

with(combinat): a:=n->fibonacci(n, 2)*fibonacci(n-1, 2)/2: seq(a(n), n=1..22); # Zerinvary Lajos, Apr 04 2008

MATHEMATICA

LinearRecurrence[{5, 5, -1}, {0, 1, 5}, 30] (* Harvey P. Dale, Sep 07 2011 *)

PROG

(MAGMA) [Floor(((Sqrt(2)+1)^(2*n+1)-(Sqrt(2)-1)^(2*n+1)-2*(-1)^n)/16): n in [0..35]]; // Vincenzo Librandi, Jul 05 2011

(PARI) Lucas(n)=([2, 1; 1, 0]^n)[2, 1];

a(n)=Lucas(n)*Lucas(n+1)/2 \\ Charles R Greathouse IV, Mar 21 2016

(PARI) a(n)=([0, 1, 0; 0, 0, 1; -1, 5, 5]^n*[0; 1; 5])[1, 1] \\ Charles R Greathouse IV, Mar 21 2016

CROSSREFS

Cf. A084159, A084175, A001654, A001652.

Sequence in context: A055838 A318591 A094972 * A111469 A241588 A229246

Adjacent sequences:  A084155 A084156 A084157 * A084159 A084160 A084161

KEYWORD

easy,nonn

AUTHOR

Paul Barry, May 18 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 20:29 EDT 2019. Contains 322446 sequences. (Running on oeis4.)