This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098309 Unsigned member r = -10 of the family of Chebyshev sequences S_r(n) defined in A092184. 1
 0, 1, 10, 121, 1440, 17161, 204490, 2436721, 29036160, 345997201, 4122930250, 49129165801, 585427059360, 6975995546521, 83126519498890, 990542238440161, 11803380341783040, 140650021862956321, 1675996882013692810, 19971312562301357401, 237979753865602596000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS ((-1)^(n+1))*a(n) = S_{-10}(n), n>=0, defined in A092184. LINKS Colin Barker, Table of n, a(n) for n = 0..900 Index entries for linear recurrences with constant coefficients, signature (11,11,-1). FORMULA a(n) = (T(n, 6)-(-1)^n)/7, with Chebyshev's polynomials of the first kind evaluated at x=6: T(n, 6)=A023038(n)=((6+sqrt(35))^n + (6-sqrt(35))^n)/2. a(n) = 12*a(n-1)-a(n-2)+2*(-1)^(n+1), n>=2, a(0)=0, a(1)=1. a(n) = 11*a(n-1) + 11*a(n-2) - a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=10. G.f.: x*(1-x)/((1+x)*(1-12*x+x^2)) = x*(1-x)/(1-11*x-11*x^2+x^3) (from the Stephan link, see A092184). a(n) = (-2*(-1)^n + (6-sqrt(35))^n + (6+sqrt(35))^n) / 14. - Colin Barker, Jan 31 2017 PROG (PARI) concat(0, Vec(x*(1-x)/(1-11*x-11*x^2+x^3) + O(x^30))) \\ Colin Barker, Jan 31 2017 CROSSREFS Sequence in context: A027770 A202808 A091692 * A056116 A246643 A233084 Adjacent sequences:  A098306 A098307 A098308 * A098310 A098311 A098312 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Oct 18 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 24 13:17 EDT 2019. Contains 324325 sequences. (Running on oeis4.)