login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A023038 a(n) = 12a(n-1) - a(n-2). 11
1, 6, 71, 846, 10081, 120126, 1431431, 17057046, 203253121, 2421980406, 28860511751, 343904160606, 4097989415521, 48831968825646, 581885636492231, 6933795669081126, 82623662392481281, 984550153040694246, 11731978174095849671, 139799187936109501806 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Chebyshev's polynomials T(n,x) evaluated at x=6.

a(n+1) give all (nontrivial, integer) solutions of Pell equation a(n+1)^2 - 35*b(n)^2 = +1 with b(n)=A004191(n), n>=0.

a(35+70k)-1 and a(35+70k)+1 are consecutive odd powerful numbers. The first pair is 23101441813552306872262673994181386126+-1. See A076445. - T. D. Noe, May 04 2006

Numbers n such that 35*(n^2-1) is a square. Vincenzo Librandi, Nov 19 2010

Except for the first term, positive values of x (or y) satisfying x^2 - 12xy + y^2 + 35 = 0. - Colin Barker, Feb 09 2014

LINKS

T. D. Noe, Table of n, a(n) for n = 0..200

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (12,-1).

FORMULA

a(n) = T(n, 6) = (S(n, 12)-S(n-2, 12))/2 with S(n, x) := U(n, x/2) and T(n), resp. U(n, x), are Chebyshev's polynomials of the first, resp. second, kind. See A053120 and A049310. S(-2, x) := -1, S(-1, x) := 0, S(n, 12)=A004191(n).

a(n) = ((6+sqrt(35))^n + (6-sqrt(35))^n)/2.

G.f.: (1-6*x)/(1-12*x+x^2).

a(n)a(n+3) - a(n+1)a(n+2) = 420. - Ralf Stephan, Jun 06 2005

MAPLE

A023038:=n->round(((6+sqrt(35))^n + (6-sqrt(35))^n)/2); seq(A023038(n), n=0..30); # Wesley Ivan Hurt, Feb 03 2014

MATHEMATICA

Table[Round[((6 + Sqrt[35])^n + (6 - Sqrt[35])^n)/2], {n, 0, 30}] (* Wesley Ivan Hurt, Feb 03 2014 *)

nn = 20; CoefficientList[Series[(1 - 6*x)/(1 - 12*x + x^2), {x, 0, nn}], x] (* T. D. Noe, Feb 05 2014 *)

CROSSREFS

Cf. A087800.

Sequence in context: A283342 A099339 A213530 * A092660 A186658 A092085

Adjacent sequences:  A023035 A023036 A023037 * A023039 A023040 A023041

KEYWORD

nonn,easy

AUTHOR

David W. Wilson

EXTENSIONS

Chebyshev comments from Wolfdieter Lang, Nov 08 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 19 08:51 EST 2017. Contains 294923 sequences.