This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A023038 a(n) = 12a(n-1) - a(n-2). 11
 1, 6, 71, 846, 10081, 120126, 1431431, 17057046, 203253121, 2421980406, 28860511751, 343904160606, 4097989415521, 48831968825646, 581885636492231, 6933795669081126, 82623662392481281, 984550153040694246, 11731978174095849671, 139799187936109501806 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Chebyshev's polynomials T(n,x) evaluated at x=6. a(n+1) give all (nontrivial, integer) solutions of Pell equation a(n+1)^2 - 35*b(n)^2 = +1 with b(n)=A004191(n), n>=0. a(35+70k)-1 and a(35+70k)+1 are consecutive odd powerful numbers. The first pair is 23101441813552306872262673994181386126+-1. See A076445. - T. D. Noe, May 04 2006 Numbers n such that 35*(n^2-1) is a square. Vincenzo Librandi, Nov 19 2010 Except for the first term, positive values of x (or y) satisfying x^2 - 12xy + y^2 + 35 = 0. - Colin Barker, Feb 09 2014 LINKS T. D. Noe, Table of n, a(n) for n = 0..200 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (12,-1). FORMULA a(n) = T(n, 6) = (S(n, 12)-S(n-2, 12))/2 with S(n, x) := U(n, x/2) and T(n), resp. U(n, x), are Chebyshev's polynomials of the first, resp. second, kind. See A053120 and A049310. S(-2, x) := -1, S(-1, x) := 0, S(n, 12)=A004191(n). a(n) = ((6+sqrt(35))^n + (6-sqrt(35))^n)/2. G.f.: (1-6*x)/(1-12*x+x^2). a(n)a(n+3) - a(n+1)a(n+2) = 420. - Ralf Stephan, Jun 06 2005 MAPLE A023038:=n->round(((6+sqrt(35))^n + (6-sqrt(35))^n)/2); seq(A023038(n), n=0..30); # Wesley Ivan Hurt, Feb 03 2014 MATHEMATICA Table[Round[((6 + Sqrt[35])^n + (6 - Sqrt[35])^n)/2], {n, 0, 30}] (* Wesley Ivan Hurt, Feb 03 2014 *) nn = 20; CoefficientList[Series[(1 - 6*x)/(1 - 12*x + x^2), {x, 0, nn}], x] (* T. D. Noe, Feb 05 2014 *) CROSSREFS Cf. A087800. Sequence in context: A283342 A099339 A213530 * A092660 A186658 A092085 Adjacent sequences:  A023035 A023036 A023037 * A023039 A023040 A023041 KEYWORD nonn,easy AUTHOR EXTENSIONS Chebyshev comments from Wolfdieter Lang, Nov 08 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.