OFFSET
0,3
COMMENTS
((-1)^(n+1))*a(n) = S_{-11}(n), n>=0, defined in A092184.
LINKS
FORMULA
a(n)= 2*(T(n, 13/2)-(-1)^n)/15, with twice Chebyshev's polynomials of the first kind evaluated at x=13/2: 2*T(n, 13/2)=A078363(n)=((13+sqrt(165))^n + (13-sqrt(165))^n)/2^n.
a(n)= 13*a(n-1)-a(n-2)+2*(-1)^(n+1), n>=2, a(0)=0, a(1)=1.
a(n)= 12*a(n-1) + 12*a(n-2) - a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=11.
G.f.: x*(1-x)/((1+x)*(1-13*x+x^2)) = x*(1-x)/(1-12*x-12*x^2+x^3) (from the Stephan link, see A092184).
MATHEMATICA
LinearRecurrence[{12, 12, -1}, {0, 1, 11}, 30] (* Harvey P. Dale, Mar 20 2023 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 18 2004
STATUS
approved