This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098306 Unsigned member r=-6 of the family of Chebyshev sequences S_r(n) defined in A092184. 4
 0, 1, 6, 49, 384, 3025, 23814, 187489, 1476096, 11621281, 91494150, 720331921, 5671161216, 44648957809, 351520501254, 2767515052225, 21788599916544, 171541284280129, 1350541674324486, 10632792110315761, 83711795208201600 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS ((-1)^(n+1))*a(n) = S_{-6}(n), n>=0, defined in A092184. This sequence is a divisibility sequence, i.e., a(n) divides a(m) whenever n divides m. Case P1 = 6, P2 = -16, Q = 1 of the 3 parameter family of 4th order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 25 2014 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277. H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume Index entries for linear recurrences with constant coefficients, signature (7,7,-1). FORMULA a(n) = (T(n, 4)-(-1)^n)/5, with Chebyshev's polynomials of the first kind evaluated at x=4: T(n, 4)=A001091(n)=((4+sqrt(15))^n + (4-sqrt(15))^n)/2. a(n) = 8*a(n-1) - a(n-2) + 2*(-1)^(n+1), n>=2, a(0)=0, a(1)=1. a(n) = 7*a(n-1) + 7*a(n-2) - a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=6. G.f.: x*(1-x)/((1+x)*(1-8*x+x^2)) = x*(1-x)/(1-7*x-7*x^2+x^3) (from the Stephan link, see A092184). From Peter Bala, Mar 25 2014: (Start) a(2*n) = 6*A001090(n)^2; a(2*n+1) = A070997(n)^2. a(n) = |u(n)|^2, where {u(n)} is the Lucas sequence in the quadratic integer ring Z[sqrt(-6)] defined by the recurrence u(0) = 0, u(1) = 1, u(n) = sqrt(-6)*u(n-1) - u(n-2) for n >= 2. Equivalently, a(n) = U(n-1,sqrt(-6)/2)*U(n-1,-sqrt(-6)/2), where U(n,x) denotes the Chebyshev polynomial of the second kind. a(n) = 1/10*( (4 + sqrt(15))^n + (4 - sqrt(15))^n - 2*(-1)^n ). a(n) = the bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, 4; 1, 3] and T(n,x) denotes the Chebyshev polynomial of the first kind. See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End) MATHEMATICA a[n_] := 1/10*((4 + Sqrt)^n + (4 - Sqrt)^n - 2*(-1)^n) // Simplify; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 28 2017 *) LinearRecurrence[{7, 7, -1}, {0, 1, 6, 49, 384, 3025}, 50] (* G. C. Greubel, Aug 08 2017 *) PROG (PARI) x='x+O('x^50); Vec(x*(1-x)/((1+x)*(1-8*x+x^2))) \\ G. C. Greubel, Aug 08 2017 CROSSREFS Cf. A001090, A001091, A070997, A092184, A100047. Sequence in context: A283226 A292124 A104170 * A055847 A143165 A008786 Adjacent sequences:  A098303 A098304 A098305 * A098307 A098308 A098309 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Oct 18 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 20:23 EDT 2019. Contains 323528 sequences. (Running on oeis4.)