login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098293
Powers of 2 alternating with powers of 3.
4
1, 1, 2, 3, 4, 9, 8, 27, 16, 81, 32, 243, 64, 729, 128, 2187, 256, 6561, 512, 19683, 1024, 59049, 2048, 177147, 4096, 531441, 8192, 1594323, 16384, 4782969, 32768, 14348907, 65536, 43046721, 131072, 129140163, 262144, 387420489, 524288
OFFSET
0,3
COMMENTS
The finite sequence [1,2,3,4,9,8,27] is used in Timaios [35b] by Platon.
REFERENCES
Luc Brisson, Le Même et l'Autre dans la Structure Ontologique du Timée de Platon, Klincksieck, Paris, 1974, p. 317.
FORMULA
a(2*k) = 2^k, a(2*k+1) = 3^k, k>=0.
G.f.: (1+x-3*x^2-2*x^3)/((1-2*x^2)*(1-3*x^2)).
a(n) = ((5-(-1)^n)/2)^((2*n-1+(-1)^n)/4). - Luce ETIENNE, Dec 13 2014
MAPLE
seq(seq(k^n, k=2..3), n=0..19); # Zerinvary Lajos, Jun 29 2007
MATHEMATICA
With[{nn=20}, Riffle[2^Range[0, nn], 3^Range[0, nn]]] (* Harvey P. Dale, Nov 28 2011 *)
Flatten[Table[{2^n, 3^n}, {n, 0, 20}]] (* Vincenzo Librandi, May 10 2015 *)
PROG
(Magma) &cat[ [2^n, 3^n]: n in [0..30]]; // Vincenzo Librandi, May 10 2015
(Python)
def A098293(n): return 3**(n>>1) if n&1 else 1<<(n>>1) # Chai Wah Wu, Sep 24 2024
CROSSREFS
Except for initial 1, reordering of A006899.
Sequence in context: A365117 A374445 A227928 * A095260 A171572 A113234
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 18 2004
STATUS
approved