This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006899 Numbers of the form 2^i or 3^j. (Formerly M0588) 27
 1, 2, 3, 4, 8, 9, 16, 27, 32, 64, 81, 128, 243, 256, 512, 729, 1024, 2048, 2187, 4096, 6561, 8192, 16384, 19683, 32768, 59049, 65536, 131072, 177147, 262144, 524288, 531441, 1048576, 1594323, 2097152, 4194304, 4782969, 8388608, 14348907, 16777216, 33554432 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) = A085239(n)^A085238(n). - Reinhard Zumkeller, Jun 22 2003 Complement of A033845 with respect to A003586; A086411(a(n)) = A086410(a(n)). - Reinhard Zumkeller, Sep 25 2008 In the 14th century, Levi Ben Gerson proved that the only pairs of terms which differ by 1 are (1, 2), (2, 3), (3, 4), and (8, 9); see A235365, A235366, A236210. - Jonathan Sondow, Jan 20 2014 Numbers n such that absolute value of the greatest prime factor of n minus the smallest prime not dividing n is 1 (that is, abs(A006530(n)-A053669(n)) = 1). - Anthony Browne, Jun 26 2016 1 and numbers k such that k = phi(k) + phi(2*k)/2. - Paolo P. Lava, Oct 26 2017 REFERENCES G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940, p. 78. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 1..500 Boris Alexeev, Minimal DFAs for testing divisibility, arXiv:cs/0309052 [cs.CC], 2003. Jung-Chao Ban, Wen-Guei Hu, and Song-Sun Lin, Pattern generation problems arising in multiplicative integer systems, arXiv preprint arXiv:1207.7154 [math.DS], 2012. Eric Weisstein's World of Mathematics, Pillai's Theorem. FORMULA A053669(a(n)) - A006530(a(n)) = (-1)^a(n) n > 1. - Anthony Browne, Jun 26 2016 MAPLE A:={seq(2^n, n=0..63)}: B:={seq(3^n, n=0..40)}: C:=sort(convert(A union B, list)): seq(C[j], j=1..39); # Emeric Deutsch, Aug 03 2005 MATHEMATICA seqMax = 10^20; Union[2^Range[0, Floor[Log[2, seqMax]]], 3^Range[0, Floor[Log[3, seqMax]]]] (* Stefan Steinerberger, Apr 08 2006 *) PROG (Haskell) a006899 n = a006899_list !! (n-1) a006899_list = 1 : m (tail a000079_list) (tail a000244_list) where    m us'@(u:us) vs'@(v:vs) = if u < v then u : m us vs' else v : m us' vs -- Reinhard Zumkeller, Oct 09 2013 (PARI) is(n)=n>>valuation(n, 2)==1 || n==3^valuation(n, 3) \\ Charles R Greathouse IV, Aug 29 2016 (PARI) upto(n) = my(res = vector(logint(n, 2) + logint(n, 3) + 1), t = 1); res[1] = 1; for(i = 2, 3, for(j = 1, logint(n, i), t++; res[t] = i^j)); vecsort(res) \\ David A. Corneth, Oct 26 2017 CROSSREFS Union of A000079 and A000244. - Reinhard Zumkeller, Sep 25 2008 Cf. A170803, A235365, A235366, A236210. A186927 and A186928 are subsequences. Cf. A108906 (first differences), A006895, A227928. Sequence in context: A068317 A074311 A076382 * A256179 A078830 A304521 Adjacent sequences:  A006896 A006897 A006898 * A006900 A006901 A006902 KEYWORD nonn,easy,nice AUTHOR EXTENSIONS More terms from Reinhard Zumkeller, Jun 22 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 00:52 EDT 2019. Contains 328315 sequences. (Running on oeis4.)