OFFSET
0,5
COMMENTS
Row n has 1+floor(n/2) entries.
LINKS
Alois P. Heinz, Rows n = 0..180, flattened
FORMULA
E.g.f.: 2(t-1)u/[ -2u+(2-t+tu)exp((-1+u)x/2)+(t-2+tu)exp(-(1+u)x/2)], where u=sqrt(5-4t).
Sum_{k=1..floor(n/2)} k * T(n,k) = A097593(n). - Alois P. Heinz, Jul 04 2019
EXAMPLE
Triangle starts:
1;
1;
1, 1;
2, 4;
7, 12, 5;
25, 52, 43;
102, 299, 258, 61;
Example: T(4,2) = 5 because we have 13/24, 14/23, 23/14, 24/13 and 34/12.
MAPLE
G:=2*(t-1)*u/(-2*u+(2-t+t*u)*exp((-1+u)*x/2)+(t-2+t*u)*exp(-(1+u)*x/2)): u:=sqrt(5-4*t): Gser:=simplify(series(G, x=0, 12)): P[0]:=1: for n from 1 to 11 do P[n]:=sort(n!*coeff(Gser, x^n)) od: seq(seq(coeff(t*P[n], t^k), k=1..1+floor(n/2)), n=0..11);
# second Maple program:
b:= proc(u, o, t) option remember; `if`(u+o=0, x^t, expand(
add(b(u+j-1, o-j, irem(t+1, 2)), j=1..o)+
add(b(u-j, o+j-1, 0)*x^t, j=1..u)))
end:
T:= n->(p->seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
seq(T(n), n=0..12); # Alois P. Heinz, Nov 19 2013
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, x^t, Expand[Sum[b[u+j-1, o-j, Mod[t+1, 2]], {j, 1, o}] + Sum[b[u-j, o+j-1, 0]*x^t, {j, 1, u}]]]; T[n_] := Function[ {p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0, 0]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Apr 29 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Aug 29 2004
STATUS
approved