login
A097594
a(n) = (a(n-1) mod a(n-2)) + a(n-2), a(0) = 3, a(1) = 2.
2
2, 5, 3, 8, 5, 13, 8, 21, 13, 34, 21, 55, 34, 89, 55, 144, 89, 233, 144, 377, 233, 610, 377, 987, 610, 1597, 987, 2584, 1597, 4181, 2584, 6765, 4181, 10946, 6765, 17711, 10946, 28657, 17711, 46368, 28657, 75025, 46368, 121393, 75025, 196418, 121393, 317811, 196418, 514229, 317811, 832040, 514229
OFFSET
0,1
FORMULA
a(2n) = Fibonacci(n+4), a(2n+1) = Fibonacci(n+3).
a(n) = A053602(n+6).
a(n) = abs( A051792(n+11) ).
G.f.: (2 + 5*x + x^2 + 3*x^3)/(1 - x^2 - x^4). - G. C. Greubel, Dec 06 2022
MATHEMATICA
LinearRecurrence[{0, 1, 0, 1}, {2, 5, 3, 8}, 60] (* G. C. Greubel, Dec 06 2022 *)
PROG
(Magma) [Fibonacci(3 +Floor(n/2) +2*(n mod 2)): n in [0..60]]; // G. C. Greubel, Dec 06 2022
(SageMath) [fibonacci(3 +(n//2) + 2*(n%2)) for n in range(61)] # G. C. Greubel, Dec 06 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Gerald McGarvey, Aug 29 2004
STATUS
approved