login
A097148
Total sum of maximum block sizes in all partitions of n-set.
6
1, 3, 10, 35, 136, 577, 2682, 13435, 72310, 414761, 2524666, 16239115, 109976478, 781672543, 5814797281, 45155050875, 365223239372, 3070422740989, 26780417126048, 241927307839731, 2260138776632752, 21805163768404127, 216970086170175575, 2224040977932468379
OFFSET
1,2
COMMENTS
Let M be the infinite lower triangular matrix given by A080510 and v the column vector [1,2,3,...] then M*v=A097148 (this sequence, as column vector). - Gary W. Adamson, Feb 24 2011
LINKS
FORMULA
E.g.f.: Sum_{k>=0} (exp(exp(x)-1)-exp(Sum_{j=1..k} x^j/j!)).
MAPLE
b:= proc(n, m) option remember; `if`(n=0, m, add(
b(n-j, max(j, m))*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=1..24); # Alois P. Heinz, Mar 02 2020, revised May 08 2024
MATHEMATICA
Drop[ Range[0, 22]! CoefficientList[ Series[ Sum[E^(E^x - 1) - E^Sum[x^j/j!, {j, 1, k}], {k, 0, 22}], {x, 0, 22}], x], 1] (* Robert G. Wilson v, Aug 05 2004 *)
CROSSREFS
Cf. A080510.
Column k=1 of A319375.
Sequence in context: A008984 A151048 A149038 * A149039 A151477 A184175
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jul 27 2004
EXTENSIONS
More terms from Robert G. Wilson v, Aug 05 2004
STATUS
approved