The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097146 Total sum of maximum list sizes in all sets of lists of n-set, cf. A000262. 3
 0, 1, 5, 31, 217, 1781, 16501, 172915, 1998641, 25468777, 352751941, 5292123431, 85297925065, 1472161501981, 27039872306357, 527253067633531, 10865963240550241, 236088078855319505, 5390956470528548101, 129102989125943058607, 3234053809095307670201, 84596120521251178630981, 2305894874979300173268085 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..444 FORMULA E.g.f.: exp(x/(1-x))*Sum_{k>0} (1-exp(x^k/(x-1))). EXAMPLE For n=4 we have 73 sets of lists (cf. A000262): (1234) (24 ways), (123)(4) (6*4 ways), (12)(34) (3*4 ways), (12)(3)(4) (6*2 ways), (1)(2)(3)(4) (1 way); so a(4)= 24*4+24*3+12*2+12*2+1*1 = 217. MAPLE b:= proc(n, m) option remember; `if`(n=0, m, add(j!*       b(n-j, max(m, j))*binomial(n-1, j-1), j=1..n))     end: a:= n-> b(n, 0): seq(a(n), n=0..25);  # Alois P. Heinz, May 10 2016 MATHEMATICA b[n_, m_] := b[n, m] = If[n == 0, m, Sum[j! b[n-j, Max[m, j]] Binomial[n-1, j-1], {j, 1, n}]]; a[n_] := b[n, 0]; a /@ Range[0, 25] (* Jean-François Alcover, Nov 05 2020, after Alois P. Heinz *) PROG (PARI) N=50; x='x+O('x^N); egf=exp(x/(1-x))*sum(k=1, N, (1-exp(x^k/(x-1))) ); Vec( serlaplace(egf) ) /* show terms */ CROSSREFS Cf. A028417, A028418, A046746, A006128, A097145, A097147, A097148. Sequence in context: A153232 A287899 A110379 * A143020 A059035 A199877 Adjacent sequences:  A097143 A097144 A097145 * A097147 A097148 A097149 KEYWORD easy,nonn AUTHOR Vladeta Jovovic, Jul 27 2004 EXTENSIONS a(0)=0 prepended by Alois P. Heinz, May 10 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 17 07:52 EDT 2021. Contains 343060 sequences. (Running on oeis4.)