login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097146 Total sum of maximum list sizes in all sets of lists of n-set, cf. A000262. 3
0, 1, 5, 31, 217, 1781, 16501, 172915, 1998641, 25468777, 352751941, 5292123431, 85297925065, 1472161501981, 27039872306357, 527253067633531, 10865963240550241, 236088078855319505, 5390956470528548101, 129102989125943058607, 3234053809095307670201, 84596120521251178630981, 2305894874979300173268085 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..444

FORMULA

E.g.f.: exp(x/(1-x))*Sum_{k>0} (1-exp(x^k/(x-1))).

EXAMPLE

For n=4 we have 73 sets of lists (cf. A000262): (1234) (24 ways), (123)(4) (6*4 ways), (12)(34) (3*4 ways), (12)(3)(4) (6*2 ways), (1)(2)(3)(4) (1 way); so a(4)= 24*4+24*3+12*2+12*2+1*1 = 217.

MAPLE

b:= proc(n, m) option remember; `if`(n=0, m, add(j!*

      b(n-j, max(m, j))*binomial(n-1, j-1), j=1..n))

    end:

a:= n-> b(n, 0):

seq(a(n), n=0..25);  # Alois P. Heinz, May 10 2016

PROG

(PARI)

N=50; x='x+O('x^N);

egf=exp(x/(1-x))*sum(k=1, N, (1-exp(x^k/(x-1))) );

Vec( serlaplace(egf) ) /* show terms */

CROSSREFS

Cf. A028417, A028418, A046746, A006128, A097145, A097147, A097148.

Sequence in context: A153232 A287899 A110379 * A143020 A059035 A199877

Adjacent sequences:  A097143 A097144 A097145 * A097147 A097148 A097149

KEYWORD

easy,nonn

AUTHOR

Vladeta Jovovic, Jul 27 2004

EXTENSIONS

a(0)=0 prepended by Alois P. Heinz, May 10 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 29 02:35 EST 2020. Contains 332353 sequences. (Running on oeis4.)