login
A096173
Numbers k such that k^3+1 is an odd semiprime.
19
2, 4, 6, 16, 18, 22, 28, 42, 58, 60, 70, 72, 78, 100, 102, 106, 112, 148, 156, 162, 190, 210, 232, 280, 310, 330, 352, 358, 382, 396, 448, 456, 490, 568, 606, 672, 756, 786, 820, 826, 828, 856, 858, 876, 928, 970, 982, 1008, 1012, 1030, 1068, 1092, 1108, 1150
OFFSET
1,1
COMMENTS
Numbers n such that n^3 + 1 is a semiprime, because then n^3 + 1 must be odd, since n^3 + 1 = (n+1)*(n^2 - n + 1) is a semiprime only if n+1 is odd. - Jonathan Sondow, Feb 02 2014
Obviously, n + 1 is always a prime number. Sequence is intersection of A006093 and A055494. - Altug Alkan, Dec 20 2015
LINKS
FORMULA
a(n) = 2*A237037(n) = (A237040(n)-1)^(1/3). - Jonathan Sondow, Feb 02 2014
EXAMPLE
a(1)=2 because 2^3+1=9=3*3, a(13)=100: 100^3+1=1000001=101*9901.
MAPLE
select(n -> isprime(n+1) and isprime(n^2-n+1), [seq(2*i, i=1..1000)]); # Robert Israel, Dec 20 2015
MATHEMATICA
Select[Range[1200], PrimeQ[#^2 - # + 1] && PrimeQ[# + 1] &] (* Jonathan Sondow, Feb 02 2014 *)
PROG
(PARI) for(n=1, 1e5, if(bigomega(n^3+1)==2, print1(n, ", "))); \\ Altug Alkan, Dec 20 2015
(Magma) [n: n in [1..2*10^3] | IsPrime(n+1) and IsPrime(n^2-n+1)]; // Vincenzo Librandi, Dec 21 2015
CROSSREFS
Cf. A001358; A081256: largest prime factor of k^3+1; A096174: (k^3+1)/(k+1) is prime; A046315, A237037, A237038, A237039, A237040.
Sequence in context: A326782 A358126 A096174 * A287681 A333021 A114874
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Jun 20 2004
EXTENSIONS
Corrected by Zak Seidov, Mar 08 2006
STATUS
approved