login
A096170
Primes of the form (n^4 + 1)/2.
3
41, 313, 1201, 7321, 14281, 41761, 97241, 139921, 353641, 750313, 1156721, 5278001, 6922921, 8925313, 12705841, 14199121, 21523361, 56275441, 60775313, 81523681, 87450313, 100266961, 138461441, 273990641, 370600313, 407865361
OFFSET
1,1
COMMENTS
Note that n must be odd. Terms of primitive Pythagorean triples: (n^2, (n^4-1)/2, (n^4+1)/2).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
a(1)=41 because (3^4 + 1)/2 = 82/2 = 41 is prime.
MATHEMATICA
Select[(Range[200]^4+1)/2, PrimeQ] (* Harvey P. Dale, Mar 09 2013 *)
PROG
(Magma) [ a: n in [0..2500] | IsPrime(a) where a is ((n^4+1) div 2) ]; // Vincenzo Librandi, Apr 15 2011
(PARI) list(lim)=my(v=List(), t); forstep(n=3, sqrtnint(lim\1*2-1, 4), 2, if(isprime(t=(n^4+1)/2), listput(v, t))); Vec(v) \\ Charles R Greathouse IV, Feb 14 2017
CROSSREFS
Cf. A096169 (n^4+1)/2 is prime, A000068 n^4+1 is prime, A037896 primes of the form n^4+1, A096171 n^4+1 is an odd semiprime, A096172 largest prime factor of n^4+1.
Sequence in context: A364269 A002646 A175110 * A277201 A340465 A282867
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Jun 19 2004
EXTENSIONS
Name edited by Zak Seidov, Apr 14 2011
STATUS
approved