

A096175


Numbers k such that k^31 is an odd semiprime.


9



6, 8, 12, 14, 20, 24, 38, 54, 62, 80, 90, 110, 138, 150, 164, 168, 192, 194, 272, 278, 314, 332, 348, 398, 402, 434, 500, 572, 642, 644, 720, 728, 762, 798, 812, 860, 864, 878, 920, 992, 1020, 1022, 1070, 1092, 1098, 1118, 1130, 1182, 1202, 1230, 1260, 1308
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Hugo Pfoertner, Table of n, a(n) for n = 1..10000
Dario A. Alpern, Factorization using the Elliptic Curve Method


EXAMPLE

a(1)=6 because 6^3  1 = 216  1 = 215 = 5*43.


PROG

(PARI)
forstep (k=2, 1310, 2, if(bigomega(k^31)==2, print1(k, ", ")))
\\ Hugo Pfoertner, Nov 28 2017


CROSSREFS

Cf. A096173: k^3+1 is an odd semiprime; A081257: largest prime factor of k^31; A096176 (k^31)/(k1) is prime; A046315.
Sequence in context: A315858 A123303 A063207 * A274349 A315859 A315860
Adjacent sequences: A096172 A096173 A096174 * A096176 A096177 A096178


KEYWORD

nonn


AUTHOR

Hugo Pfoertner, Jun 22 2004


STATUS

approved



