This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A094840 a(1) = 1; for n > 1, a(n) = curling number of (b(1),...,b(n-1)), where b() = Linus sequence A006345. 2
 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 3, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 3, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 2, 2, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS The curling number of a finite string S = (s(1),...,s(n)) is the largest integer k such that S can be written as xy^k for strings x and y (where y has positive length). LINKS F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence, J. Integer Sequences, Vol. 10 (2007), #07.1.2. F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence [pdf, ps]. MAPLE fd := fopen("b006345.txt", READ) : a006345 := [] : bf := fscanf(fd, "%d %d") : while nops(bf) <> 0 do a006345 := [op(a006345), op(2, bf) ] ; bf := fscanf(fd, "%d %d") ; od: curlN := proc(L) local a, k, klen, Llen, y ; a := 1 ; Llen := nops(L) ; for klen from 1 to floor(Llen/2) do y := op(Llen-klen+1..Llen, L) ; for k from 2 to floor(Llen/klen) do if op(Llen-k*klen+1..Llen-(k-1)*klen, L) = y then if k > a then a := k ; fi ; else break ; fi ; od: od: RETURN(a) ; end: A094840 := proc(n) global a006345 ; if n = 1 then 1; else curlN( [op(1..n-1, a006345)] ) ; fi ; end: for n from 1 to 100 do printf("%d, ", A094840(n)) ; od: # R. J. Mathar, Dec 07 2007 CROSSREFS Cf. A090822, A006345, A093921, A093914. Cf. A006345. Sequence in context: A269254 A049236 A244259 * A035218 A237442 A277070 Adjacent sequences:  A094837 A094838 A094839 * A094841 A094842 A094843 KEYWORD nonn AUTHOR N. J. A. Sloane, May 26 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 13:57 EDT 2019. Contains 328299 sequences. (Running on oeis4.)