

A094841


Let p = nth odd prime. Then a(n) = least positive integer congruent to 3 modulo 8 such that Legendre(a(n), q) = 1 for all odd primes q <= p.


6



19, 43, 43, 67, 67, 163, 163, 163, 163, 163, 163, 77683, 77683, 1333963, 2404147, 2404147, 20950603, 36254563, 51599563, 96295483, 96295483, 114148483, 269497867, 269497867, 269497867, 269497867, 585811843, 52947440683
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

(a(n1) + 1)/4 is the least positive integer c such that x^2 + x + c is not divisible by the first n primes. This implies that a(n) is congruent to 19 mod 24 and that a(n) is congruent to 43 or 67 mod 120 for n > 1.  William P. Orrick, Mar 19 2017
With an initial a(0) = 3, a(n) is the negated fundamental discriminant D < 0 with the least absolute value such that the first n + 1 primes are inert in the imaginary quadratic field with discriminant D. See A094847 for the real discriminant case.  Jianing Song, Feb 15 2019


LINKS

William P. Orrick, Table of n, a(n) for n = 1..58 (first 28 terms from N. J. A. Sloane)
M. J. Jacobson, Jr., Computational Techniques in Quadratic Fields, Master's thesis, University of Manitoba, Winnipeg, Manitoba, 1995. (This sequence is given in Table 6.6.)
Michael John Jacobson Jr. and Hugh C. Williams, New quadratic polynomials with high densities of prime values, Math. Comp. 72 (2003), 499519.
D. H. Lehmer, E. Lehmer and D. Shanks, Integer sequences having prescribed quadratic character, Math. Comp., 24 (1970), 433451.


FORMULA

a(n) = 4*A181667(n+1)  1.  William P. Orrick, Mar 19 2017


PROG

(PARI) isok(m, oddpn) = {forprime(q=3, oddpn, if (kronecker(m, q) != 1, return (0)); ); return (1); }
a(n) = {oddpn = prime(n+1); m = 3; while(! isok(m, oddpn), m += 8); m; } \\ Michel Marcus, Oct 17 2017


CROSSREFS

Cf. A094842, A094843, A094844.
Cf. A094847 (the real quadratic field case), A094848, A094849, A094850.
See A001986, A001987, A094845, A094846 for the case where the terms are restricted to the primes.
Cf. also A181667.
Sequence in context: A140603 A139580 A156897 * A001986 A270123 A139811
Adjacent sequences: A094838 A094839 A094840 * A094842 A094843 A094844


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Jun 13 2004


STATUS

approved



