The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A093921 a(1) = 1; for n > 1, a(n) = curling number of (b(1),...,b(n-1)), where b() = Kolakoski sequence A000002. 2
 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS The curling number of a finite string S = (s(1),...,s(n)) is the largest integer k such that S can be written as xy^k for strings x and y (where y has positive length). LINKS F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence, J. Integer Sequences, Vol. 10 (2007), #07.1.2. F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence [pdf, ps]. CROSSREFS Cf. A090822, A000002, A093914. Sequence in context: A277070 A139355 A039736 * A140192 A324905 A240231 Adjacent sequences:  A093918 A093919 A093920 * A093922 A093923 A093924 KEYWORD nonn AUTHOR N. J. A. Sloane, May 26 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 22:58 EDT 2020. Contains 334634 sequences. (Running on oeis4.)