OFFSET
1,4
COMMENTS
T(1,i) = T(i,1) = A090822(i). For i and j > 1, T(i,j) = max {k1, k2}, where k1 = curling number of (T(i,1), T(i,2)...,T(i,j-1)), k2 = curling number of (T(1,j), T(2,j)...,T(i-1,j)).
The curling number of a finite string S = (s(1),...,s(n)) is the largest integer k such that S can be written as xy^k for strings x and y (where y has positive length).
LINKS
F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence, J. Integer Sequences, Vol. 10 (2007), #07.1.2.
EXAMPLE
Array begins:
1 1 2 1 1 2 2 2 3 1 1 2 1 1 2 2 2 3 2 1 ... (A090822)
1 1 2 1 1 2 2 2 3 1 1 2 1 1 2 2 2 3 2 1 ... (A090822)
2 2 2 3 2 2 2 3 2 2 2 3 3 2 ... (A091787)
1 1 3 1 1 3 3 2 1 1 2 1 1 2 ... (A094782)
1 1 2 1 1 2 2 2 3 1 2 1 1 2 ... (A094839)
2 2 2 3 2 1 1 2 1 2 3 2 2 3 ...
2 2 2 3 2 1 1 3 1 2 ...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jun 12 2004
STATUS
approved