The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A094781 Array T(i,j), i>=1, j >= 1, forming a two-dimensional version of A090822, read by antidiagonals. 3
 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 3, 3, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 3, 2, 2, 3, 1, 3, 2, 2, 3, 1, 3, 3, 3, 2, 2, 3, 3, 3, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 3, 2, 1, 2, 3, 1, 2, 2, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS T(1,i) = T(i,1) = A090822(i). For i and j > 1, T(i,j) = max {k1, k2}, where k1 = curling number of (T(i,1), T(i,2)...,T(i,j-1)), k2 = curling number of (T(1,j), T(2,j)...,T(i-1,j)). The curling number of a finite string S = (s(1),...,s(n)) is the largest integer k such that S can be written as xy^k for strings x and y (where y has positive length). LINKS F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence, J. Integer Sequences, Vol. 10 (2007), #07.1.2. F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence [pdf, ps]. EXAMPLE Array begins: 1 1 2 1 1 2 2 2 3 1 1 2 1 1 2 2 2 3 2 1 ... (A090822) 1 1 2 1 1 2 2 2 3 1 1 2 1 1 2 2 2 3 2 1 ... (A090822) 2 2 2 3 2 2 2 3 2 2 2 3 3 2 ... (A091787) 1 1 3 1 1 3 3 2 1 1 2 1 1 2 ... (A094782) 1 1 2 1 1 2 2 2 3 1 2 1 1 2 ... (A094839) 2 2 2 3 2 1 1 2 1 2 3 2 2 3 ... 2 2 2 3 2 1 1 3 1 2 ... CROSSREFS Cf. A090822, A091787, A094782. Sequence in context: A100889 A206828 A327164 * A023582 A306717 A195969 Adjacent sequences:  A094778 A094779 A094780 * A094782 A094783 A094784 KEYWORD nonn,tabl AUTHOR N. J. A. Sloane, Jun 12 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 28 03:42 EST 2020. Contains 331317 sequences. (Running on oeis4.)