login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094781 Array T(i,j), i>=1, j >= 1, forming a two-dimensional version of A090822, read by antidiagonals. 3

%I

%S 1,1,1,2,1,2,1,2,2,1,1,1,2,1,1,2,1,3,3,1,2,2,2,2,1,2,2,2,2,2,2,1,1,2,

%T 2,2,3,2,2,3,1,3,2,2,3,1,3,3,3,2,2,3,3,3,1,1,1,2,2,2,1,2,2,2,1,1,2,1,

%U 2,1,2,1,1,2,1,2,1,2,1,2,2,1,3,2,1,2,3,1,2,2,1

%N Array T(i,j), i>=1, j >= 1, forming a two-dimensional version of A090822, read by antidiagonals.

%C T(1,i) = T(i,1) = A090822(i). For i and j > 1, T(i,j) = max {k1, k2}, where k1 = curling number of (T(i,1), T(i,2)...,T(i,j-1)), k2 = curling number of (T(1,j), T(2,j)...,T(i-1,j)).

%C The curling number of a finite string S = (s(1),...,s(n)) is the largest integer k such that S can be written as xy^k for strings x and y (where y has positive length).

%H F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="http://www.cs.uwaterloo.ca/journals/JIS/index.html">A Slow-Growing Sequence Defined by an Unusual Recurrence</a>, J. Integer Sequences, Vol. 10 (2007), #07.1.2.

%H F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence [<a href="http://neilsloane.com/doc/gijs.pdf">pdf</a>, <a href="http://neilsloane.com/doc/gijs.ps">ps</a>].

%H <a href="/index/Ge#Gijswijt">Index entries for sequences related to Gijswijt's sequence</a>

%e Array begins:

%e 1 1 2 1 1 2 2 2 3 1 1 2 1 1 2 2 2 3 2 1 ... (A090822)

%e 1 1 2 1 1 2 2 2 3 1 1 2 1 1 2 2 2 3 2 1 ... (A090822)

%e 2 2 2 3 2 2 2 3 2 2 2 3 3 2 ... (A091787)

%e 1 1 3 1 1 3 3 2 1 1 2 1 1 2 ... (A094782)

%e 1 1 2 1 1 2 2 2 3 1 2 1 1 2 ... (A094839)

%e 2 2 2 3 2 1 1 2 1 2 3 2 2 3 ...

%e 2 2 2 3 2 1 1 3 1 2 ...

%Y Cf. A090822, A091787, A094782.

%K nonn,tabl

%O 1,4

%A _N. J. A. Sloane_, Jun 12 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 17:29 EST 2016. Contains 278890 sequences.