login
Array T(i,j), i>=1, j >= 1, forming a two-dimensional version of A090822, read by antidiagonals.
3

%I #10 Aug 02 2014 06:17:48

%S 1,1,1,2,1,2,1,2,2,1,1,1,2,1,1,2,1,3,3,1,2,2,2,2,1,2,2,2,2,2,2,1,1,2,

%T 2,2,3,2,2,3,1,3,2,2,3,1,3,3,3,2,2,3,3,3,1,1,1,2,2,2,1,2,2,2,1,1,2,1,

%U 2,1,2,1,1,2,1,2,1,2,1,2,2,1,3,2,1,2,3,1,2,2,1

%N Array T(i,j), i>=1, j >= 1, forming a two-dimensional version of A090822, read by antidiagonals.

%C T(1,i) = T(i,1) = A090822(i). For i and j > 1, T(i,j) = max {k1, k2}, where k1 = curling number of (T(i,1), T(i,2)...,T(i,j-1)), k2 = curling number of (T(1,j), T(2,j)...,T(i-1,j)).

%C The curling number of a finite string S = (s(1),...,s(n)) is the largest integer k such that S can be written as xy^k for strings x and y (where y has positive length).

%H F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="http://www.cs.uwaterloo.ca/journals/JIS/index.html">A Slow-Growing Sequence Defined by an Unusual Recurrence</a>, J. Integer Sequences, Vol. 10 (2007), #07.1.2.

%H F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence [<a href="http://neilsloane.com/doc/gijs.pdf">pdf</a>, <a href="http://neilsloane.com/doc/gijs.ps">ps</a>].

%H <a href="/index/Ge#Gijswijt">Index entries for sequences related to Gijswijt's sequence</a>

%e Array begins:

%e 1 1 2 1 1 2 2 2 3 1 1 2 1 1 2 2 2 3 2 1 ... (A090822)

%e 1 1 2 1 1 2 2 2 3 1 1 2 1 1 2 2 2 3 2 1 ... (A090822)

%e 2 2 2 3 2 2 2 3 2 2 2 3 3 2 ... (A091787)

%e 1 1 3 1 1 3 3 2 1 1 2 1 1 2 ... (A094782)

%e 1 1 2 1 1 2 2 2 3 1 2 1 1 2 ... (A094839)

%e 2 2 2 3 2 1 1 2 1 2 3 2 2 3 ...

%e 2 2 2 3 2 1 1 3 1 2 ...

%Y Cf. A090822, A091787, A094782.

%K nonn,tabl

%O 1,4

%A _N. J. A. Sloane_, Jun 12 2004