login
A306717
Square array T(n, k) of positive integers, n > 0, k > 0, read by antidiagonals, filled the greedy way, such that for any i >= 0 and j >= 0 with i + j > 0, no three terms T(n, k), T(n+i, k+j), T(n+2*i, k+2*j) form an arithmetic progression.
1
1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 3, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 4, 2, 3, 1, 1, 3, 2, 4, 4, 4, 5, 2, 1, 2, 5, 4, 4, 1, 4, 5, 4, 2, 2, 4, 5, 4, 1, 1, 1, 7, 2, 4, 3, 4, 2, 7, 1, 1, 2, 1, 2, 5, 4, 5, 5, 4, 5, 2, 1, 2, 1, 2, 5, 1, 5, 5, 4, 5, 5
OFFSET
1,4
COMMENTS
This sequence is a 2-dimensional variant of A229037.
LINKS
FORMULA
T(n, k) = T(k, n).
T(n, 1) = T(n, 2) = A229037(n).
PROG
(C++) See Links section.
CROSSREFS
Cf. A229037.
Sequence in context: A327164 A094781 A023582 * A195969 A023518 A326194
KEYWORD
nonn,tabl
AUTHOR
Rémy Sigrist, Mar 06 2019
STATUS
approved