login
A094456
Triangle T(n,k), 0<=k<=n, read by rows; given by [0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, ...] DELTA [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] where DELTA is the operator defined in A084938.
3
1, 0, 1, 0, 1, 2, 0, 1, 5, 5, 0, 1, 10, 22, 14, 0, 1, 19, 70, 93, 42, 0, 1, 36, 201, 421, 386, 132, 0, 1, 69, 559, 1657, 2324, 1586, 429, 0, 1, 134, 1548, 6162, 11836, 12136, 6476, 1430, 0, 1, 263, 4316, 22445, 55843, 76928, 60948, 26333, 4862, 0, 1, 520, 12163, 81451, 254415, 444666, 467426, 297335, 106762, 16796
OFFSET
0,6
COMMENTS
Triangle :
1;
0, 1;
0, 1, 2;
0, 1, 5, 5;
0, 1, 10, 22, 14;
...
The alternating sum is (-1)^n = A033999(n). - F. Chapoton, Mar 18 2023
LINKS
FORMULA
Sum_{k=0..n} T(n,k) = A090365(n).
CROSSREFS
Cf. A000108 (main diagonal), A033999, A084938, A090365 (row sums).
Sequence in context: A109450 A086810 A085838 * A010028 A151860 A338774
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Jun 04 2004
STATUS
approved