

A094196


Indices of the start of a string of 24 consecutive squares whose sum is a square.


10



1, 9, 20, 25, 44, 76, 121, 197, 304, 353, 540, 856, 1301, 2053, 3112, 3597, 5448, 8576, 12981, 20425, 30908, 35709, 54032, 84996, 128601, 202289, 306060, 353585, 534964, 841476, 1273121, 2002557, 3029784, 3500233, 5295700, 8329856, 12602701
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The sequence could also include 11, 8 and 4; and if N is in the sequence, then so is 23N.
Equivalently, 24*a(n)^2 + 552*a(n) + 4324 is a square.
All sequences of this type (i.e., sequences with fixed offset k, and a discernible pattern: k=0...23 for this sequence, k=0...22 for A269447, k=0..1 for A001652) can be extended using a formula such as x(n) = a*x(np)  x(n2p) + b, where a and b are various constants, and p is the period of the series. Alternatively, 'p' can be considered the number of concurrent series.  Daniel Mondot, Aug 05 2016


LINKS

Daniel Mondot, Table of n, a(n) for n = 1..106
K. S. Brown, Sum of Consecutive Nth Powers Equals an Nth Power
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,10,10,0,0,0,0,1,1).


FORMULA

Recurrence: a(n+12) = 10a(n+6)  a(n) + 92.
O.g.f.: x*(18*x11*x^25*x^319*x^432*x^535*x^6+4*x^7+3*x^8+x^9+3*x^10+4*x^11+4*x^12) / ((1+x) * (110*x^6+x^12)).  R. J. Mathar, Dec 02 2007
a(0)=1, a(1)=9, a(2)=20, a(3)=25, a(4)=44, a(5)=76, a(6)=121, a(7)=197, a(8)=304, a(9)=353, a(10)=540, a(11)=856, a(12)=1301; thereafter a(n) = a(n1)+10*a(n6)10*a(n7)a(n12)+a(n13).  Harvey P. Dale, Oct 10 2011
a(1)=1, a(2)=9, a(3)=20, a(4)=25, a(5)=44, a(6)=76, a(7)=121, a(8)=197, a(9)=304, a(10)=353, a(11)=540, a(12)=856; a(n)=10*a(n6)a(n12) + 92 for n>12.  Daniel Mondot, Aug 05 2016


MATHEMATICA

LinearRecurrence[{1, 0, 0, 0, 0, 10, 10, 0, 0, 0, 0, 1, 1}, {1, 9, 20, 25, 44, 76, 121, 197, 304, 353, 540, 856, 1301}, 60] (* Harvey P. Dale, Oct 10 2011 *)


PROG

(PARI) for(n=1, 15000000, if(issquare(sum(j=n, n+23, j^2)), print1(n, ", "))) \\ Klaus Brockhaus, Jun 01 2004


CROSSREFS

Cf. A001032, A001652, A106521, A269447.
Sequence in context: A205150 A236205 A050682 * A253089 A256383 A322433
Adjacent sequences: A094193 A094194 A094195 * A094197 A094198 A094199


KEYWORD

nonn,easy


AUTHOR

Lekraj Beedassy, May 25 2004


EXTENSIONS

More terms from Don Reble (djr(AT)hotmail.com) and Klaus Brockhaus, Jun 01 2004


STATUS

approved



