login
A322433
Numbers k such that the coefficient of x^k in the expansion of Product_{j>=1} (1-x^j)^26 is zero.
7
9, 20, 31, 42, 43, 53, 64, 66, 75, 86, 89, 97, 108, 112, 119, 135, 136, 141, 152, 158, 163, 171, 174, 181, 183, 185, 196, 204, 206, 207, 218, 227, 229, 230, 240, 241, 250, 262, 273, 277, 284, 289, 295, 296, 306, 311, 317, 319, 324, 328, 339, 342, 348, 350, 361, 365
OFFSET
1,1
COMMENTS
Indices of zero entries in A010831.
LINKS
PROG
(PARI) my(x='x+O('x^400)); Vec(select(x->(x==0), Vec(eta(x)^26 - 1), 1)) \\ Michel Marcus, Dec 08 2018
CROSSREFS
Numbers k such that the coefficient of x^k in the expansion of Product_{j>=1} (1 - x^j)^m is zero: A090864 (m=1), A213250 (m=2), A014132 (m=3), A302056 (m=4), A302057 (m=5), A020757 (m=6), A322430 (m=8), A322431 (m=10), A322432 (m=14), A322043 (m=15), this sequence (m=26).
Sequence in context: A094196 A253089 A256383 * A017497 A059108 A028566
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 07 2018
STATUS
approved