login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094195 G.f.: (1-4*x)/((1-5*x)*(1-x)^2). 2
1, 3, 10, 42, 199, 981, 4888, 24420, 122077, 610359, 3051766, 15258798, 76293955, 381469737, 1907348644, 9536743176, 47683715833, 238418579115, 1192092895522, 5960464477554, 29802322387711, 149011611938493, 745058059692400, 3725290298461932, 18626451492309589 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

An approximation to A091843.

LINKS

Table of n, a(n) for n=0..24.

F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence, J. Integer Sequences, Vol. 10 (2007), #07.1.2.

F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence [pdf, ps].

Index entries for sequences related to Gijswijt's sequence

Index entries for linear recurrences with constant coefficients, signature (7,-11,5).

FORMULA

(5^(n+1)+12n+11)/16.

a(0)=1, a(1)=3, a(2)=10, a(n)=7*a(n-1)-11*a(n-2)+5*a(n-3) [From Harvey P. Dale, Dec 31 2011]

MATHEMATICA

CoefficientList[Series[(1-4x)/((1-5x)(1-x)^2), {x, 0, 30}], x] (* or *) LinearRecurrence[{7, -11, 5}, {1, 3, 10}, 30] (* Harvey P. Dale, Dec 31 2011 *)

CROSSREFS

Cf. A047926, A073724, A091843, A090822. A row of A094250.

Sequence in context: A074511 A000249 A107594 * A091843 A007552 A125274

Adjacent sequences:  A094192 A094193 A094194 * A094196 A094197 A094198

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Jun 01 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 20 20:09 EDT 2017. Contains 290837 sequences.