login
A094194
Hypotenuses x^2 + y^2 of primitive Pythagorean triangles, sorted on values x of the generator pair (x, y), x>y.
6
5, 13, 17, 25, 29, 41, 37, 61, 53, 65, 85, 65, 73, 89, 113, 85, 97, 145, 101, 109, 149, 181, 125, 137, 157, 185, 221, 145, 169, 193, 265, 173, 185, 205, 233, 269, 313, 197, 205, 221, 277, 317, 365, 229, 241, 289, 421, 257, 265, 281, 305, 337, 377, 425, 481, 293
OFFSET
1,1
COMMENTS
For ordered hypotenuses of primitive Pythagorean triangles see A020882.
The hypotenuse Z of the primitive Pythagorean triple (X, Y, Z) with X<Y<Z is obtained from the generator pairs (x, y), x>y (x and y coprime and not both odd) using the relation Z = x^2 + y^2. The even leg is 2*x*y and the odd leg is x^2 - y^2. [From Lekraj Beedassy, May 06 2010]
LINKS
CROSSREFS
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, May 25 2004
EXTENSIONS
Inserted a sqrt(.) operation in the definition - R. J. Mathar, Apr 12 2010
Deleted incorrect sqrt in definition (based on author's initial comment) - Aaron Kastel, Oct 30 2012
STATUS
approved