

A092102


Nonharmonic primes: the odd primes not in A092101.


6



3, 7, 11, 19, 29, 31, 37, 43, 47, 53, 59, 61, 71, 83, 89, 97, 101, 103, 109, 127, 131, 137, 151, 163, 167, 173, 181, 197, 199, 211, 227, 229, 233, 257, 269, 271, 283, 313, 347, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 433, 439, 457, 463, 509, 521, 523
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

For p = prime(n), Boyd defines Jp to be the set of numbers k such that p divides A001008(k), the numerator of the harmonic number H(k). For harmonic primes, Jp contains only the three numbers p1, (p1)p and (p1)(p+1).
Boyd's paper omits 509.


REFERENCES

A. Eswarathasan and E. Levine, pintegral harmonic sums, Discrete Math. 91 (1991), 249257.


LINKS

Table of n, a(n) for n=1..58.
David W. Boyd, A padic study of the partial sums of the harmonic series, Experimental Math., Vol. 3 (1994), No. 4, 287302.


CROSSREFS

Cf. A092101 (harmonic primes), A092103 (size of Jp).
Sequence in context: A265323 A276456 A126254 * A158722 A202301 A123080
Adjacent sequences: A092099 A092100 A092101 * A092103 A092104 A092105


KEYWORD

nonn


AUTHOR

T. D. Noe, Feb 20 2004


STATUS

approved



