

A092100


Smallest number of 1's in binary representations of primes between 2^n and 2^(n+1) is 4.


2



25, 32, 40, 43, 48, 56, 58, 64, 96, 104, 112, 120, 128, 134, 140, 145, 152, 160, 176, 185, 192, 208, 212, 224, 235, 240, 244, 248, 252, 256, 264, 272, 280, 286, 288, 292, 302, 304, 308, 320, 326, 332, 348, 356, 360, 384, 392, 394, 400
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Where 4 appears in A091935.
This sequence differs from multiples of 8 (A008590) very little but significantly; even fewer are odd.
Essentially the same as A081504.  R. J. Mathar, Sep 08 2008


LINKS

Table of n, a(n) for n=1..49.


MATHEMATICA

Compute the second line of the Mathematica code for A091936, then Do[ If[ Count[ IntegerDigits[ f[n], 2], 1] == 4, Print[n]], {n, 1, 400}] (* Robert G. Wilson v, Feb 19 2004 *)


CROSSREFS

Cf. A091935, A091936.
Sequence in context: A043926 A202000 A118669 * A172007 A107258 A258876
Adjacent sequences: A092097 A092098 A092099 * A092101 A092102 A092103


KEYWORD

nonn


AUTHOR

Robert G. Wilson v, Feb 19 2004


STATUS

approved



