login
A092100
Smallest number of 1's in binary representations of primes between 2^n and 2^(n+1) is 4.
2
25, 32, 40, 43, 48, 56, 58, 64, 96, 104, 112, 120, 128, 134, 140, 145, 152, 160, 176, 185, 192, 208, 212, 224, 235, 240, 244, 248, 252, 256, 264, 272, 280, 286, 288, 292, 302, 304, 308, 320, 326, 332, 348, 356, 360, 384, 392, 394, 400
OFFSET
1,1
COMMENTS
Where 4 appears in A091935.
This sequence differs from multiples of 8 (A008590) very little but significantly; even fewer are odd.
Essentially the same as A081504. - R. J. Mathar, Sep 08 2008
MATHEMATICA
Compute the second line of the Mathematica code for A091936, then Do[ If[ Count[ IntegerDigits[ f[n], 2], 1] == 4, Print[n]], {n, 1, 400}] (* Robert G. Wilson v, Feb 19 2004 *)
CROSSREFS
Sequence in context: A043926 A202000 A118669 * A172007 A107258 A258876
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Feb 19 2004
STATUS
approved