login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091534 Generalized Stirling2 array (5,2). 11
1, 20, 10, 1, 1120, 1040, 290, 30, 1, 123200, 161920, 71320, 14040, 1340, 60, 1, 22422400, 37452800, 22097600, 6263040, 958720, 82800, 4000, 100, 1, 6098892800, 12222918400, 8928102400, 3257116800, 675281600, 84782880, 6625920, 322000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The row length sequences for this array is [1,3,5,7,9,11,...]=A005408(n-1), n>=1.

LINKS

Table of n, a(n) for n=1..33.

P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.

W. Lang, First 6 rows.

M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.

FORMULA

a(n, k)=(((-1)^k)/k!)*sum(((-1)^p)*binomial(k, p)*product(fallfac(p+3*(j-1), 2), j=1..n), p=2..k), n>=1, 2<=k<=2*n, else 0. From eq. (12) of the Blasiak et al. reference with r=5, s=2.

Recursion: a(n, k)=sum(binomial(2, p)*fallfac(3*(n-1)+k-p, 2-p)*a(n-1, k-p), p=0..2), n>=2, 2<=k<=2*n, a(1, 2)=1, else 0. Rewritten from eq.(19) of the Schork reference with r=5, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle).

MATHEMATICA

a[n_, k_] := (-1)^k/k!*Sum[(-1)^p*Binomial[k, p]*Product[FactorialPower[p + 3*(j - 1), 2], {j, 1, n}], {p, 2, k}]; Table[a[n, k], {n, 1, 8}, {k, 2, 2 n}] // Flatten (* Jean-Fran├žois Alcover, Sep 01 2016 *)

CROSSREFS

Cf. A078740 (3, 2)-Stirling2, A090438 (4, 2)-Stirling2.

Cf. A072019 (row sums), A091537 (alternating row sums).

Sequence in context: A078080 A216289 A136010 * A033966 A033340 A040383

Adjacent sequences:  A091531 A091532 A091533 * A091535 A091536 A091537

KEYWORD

nonn,easy,tabf

AUTHOR

Wolfdieter Lang, Jan 23 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 19:05 EST 2016. Contains 278895 sequences.