login
A091531
Primes p such that k = 2p is the smallest positive solution to the equation phi(p+k) = phi(p) + phi(k), where phi is Euler's totient function.
1
7, 23, 31, 43, 59, 67, 71, 73, 101, 103, 107, 127, 131, 137, 139, 179, 199, 211, 223, 227, 239, 269, 281, 283, 307, 311, 331, 347, 359, 367, 379, 383, 431, 439, 463, 467, 479, 487, 491, 503, 523, 547, 563, 571, 607, 619, 631, 643, 659, 661, 683, 691, 719, 727
OFFSET
1,1
COMMENTS
Note that for all primes p > 3, phi(3p) = phi(p) + phi(2p).
MATHEMATICA
lst={}; Do[p=Prime[n]; k=1; While[EulerPhi[p+k]!=EulerPhi[p]+EulerPhi[k], k++ ]; If[k==2p, AppendTo[lst, p]], {n, 3, 200}]; lst
CROSSREFS
Cf. A066426 (least k such that phi(n+k)=phi(n)+phi(k)).
Sequence in context: A095087 A144517 A225185 * A036259 A004628 A089199
KEYWORD
nonn
AUTHOR
T. D. Noe, Jan 19 2004
STATUS
approved