

A091532


Where the number of terms in simple continued fraction for H(j) exceeds all H(i), j>i and H(k) is the kth harmonic number.


0



1, 2, 3, 5, 7, 8, 9, 13, 16, 17, 19, 23, 25, 26, 28, 29, 35, 36, 43, 45, 48, 49, 54, 57, 62, 72, 73, 79, 88, 90, 91, 99, 103, 108, 110, 113, 115, 116, 118, 125, 128, 148, 149, 157, 163, 168, 171, 172, 184, 193, 199, 205, 209, 234, 240, 243, 259, 265, 269, 270, 281, 283
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Table of n, a(n) for n=1..62.


FORMULA

Where A055573 increases.


MATHEMATICA

t = Table[ Length[ ContinuedFraction[ HarmonicNumber[n]]], {n, 1, 299}]; a = {1}; Do[ If[ t[[n]] > t[[a[[ 1]]]], AppendTo[a, n]], {n, 1, 299}]; a


CROSSREFS

Cf. A055573.
Sequence in context: A187332 A326917 A001857 * A108345 A073629 A125716
Adjacent sequences: A091529 A091530 A091531 * A091533 A091534 A091535


KEYWORD

nonn


AUTHOR

Robert G. Wilson v, Jan 19 2004


STATUS

approved



