The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A091264 Matrix defined by a(n,k) = 2^n + (k-1), read by antidiagonals. 0
 0, 1, 1, 3, 2, 2, 7, 4, 3, 3, 15, 8, 5, 4, 4, 31, 16, 9, 6, 5, 5, 63, 32, 17, 10, 7, 6, 6, 127, 64, 33, 18, 11, 8, 7, 7, 255, 128, 65, 34, 19, 12, 9, 8, 8, 511, 256, 129, 66, 35, 20, 13, 10, 9, 9, 1023, 512, 257, 130, 67, 36, 21, 14, 11, 10, 10, 2047, 1024, 513, 258, 131, 68, 37, 22 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS FORMULA For k > 0, a(n, k)= a(n, k-1) + 1. a(n, k) = 2^n + (k-1). EXAMPLE {0}; {1,1}; {3,2,2}; {7,4,3,3}; {15,8,5,4,4}; {31,16,9,6,5,5}; {63,32,17,10,7,6,6}; a(5,3) = 34 because 2^5 + (3-1) = 34. MATHEMATICA Flatten[ Table[ Table[ a[i, n - i], {i, n, 0, -1}], {n, 0, 11}]] (* both from Robert G. Wilson v, Feb 26 2004 *) Table[a[n, k], {n, 0, 10}, {k, 0, 10}] // TableForm (* to view the table *) CROSSREFS Rows: a(0, k) = A001477(k), a(1, k) = A000027(k+1) etc. etc. Columns: a(n, 0) = A000225(n). a(n, 1) = A000079(n). a(n, 2) = A000051(n). a(n, 3) = A052548(n). a(n, 4) = A062709(n). Diagonals: a(n, n+3) = A052968(n+1). a(n, n+2) = A005126(n). a(n, n+1) = A006127(n). a(n, n) = A052944(n). a(n, n-1) = A083706(n-1). Also note that the sums of the antidiagonals = the partial sums of the main diagonal, i.e., a(n, n). Sequence in context: A280851 A279391 A237270 * A021760 A092419 A293268 Adjacent sequences:  A091261 A091262 A091263 * A091265 A091266 A091267 KEYWORD easy,nonn,tabl AUTHOR Ross La Haye, Feb 23 2004 EXTENSIONS More terms from Robert G. Wilson v, Feb 23 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 26 08:47 EST 2020. Contains 331278 sequences. (Running on oeis4.)