login
A091264
Matrix defined by a(n,k) = 2^n + (k-1), read by antidiagonals.
0
0, 1, 1, 3, 2, 2, 7, 4, 3, 3, 15, 8, 5, 4, 4, 31, 16, 9, 6, 5, 5, 63, 32, 17, 10, 7, 6, 6, 127, 64, 33, 18, 11, 8, 7, 7, 255, 128, 65, 34, 19, 12, 9, 8, 8, 511, 256, 129, 66, 35, 20, 13, 10, 9, 9, 1023, 512, 257, 130, 67, 36, 21, 14, 11, 10, 10, 2047, 1024, 513, 258, 131, 68, 37, 22
OFFSET
0,4
FORMULA
For k > 0, a(n, k)= a(n, k-1) + 1.
a(n, k) = 2^n + (k-1).
EXAMPLE
{0};
{1,1};
{3,2,2};
{7,4,3,3};
{15,8,5,4,4};
{31,16,9,6,5,5};
{63,32,17,10,7,6,6};
a(5,3) = 34 because 2^5 + (3-1) = 34.
MATHEMATICA
Flatten[ Table[ Table[ a[i, n - i], {i, n, 0, -1}], {n, 0, 11}]] (* both from Robert G. Wilson v, Feb 26 2004 *)
Table[a[n, k], {n, 0, 10}, {k, 0, 10}] // TableForm (* to view the table *)
CROSSREFS
Rows: a(0, k) = A001477(k), a(1, k) = A000027(k+1) etc. etc. Columns: a(n, 0) = A000225(n). a(n, 1) = A000079(n). a(n, 2) = A000051(n). a(n, 3) = A052548(n). a(n, 4) = A062709(n). Diagonals: a(n, n+3) = A052968(n+1). a(n, n+2) = A005126(n). a(n, n+1) = A006127(n). a(n, n) = A052944(n). a(n, n-1) = A083706(n-1). Also note that the sums of the antidiagonals = the partial sums of the main diagonal, i.e., a(n, n).
Sequence in context: A280851 A279391 A237270 * A021760 A092419 A293268
KEYWORD
easy,nonn,tabl
AUTHOR
Ross La Haye, Feb 23 2004
EXTENSIONS
More terms from Robert G. Wilson v, Feb 23 2004
STATUS
approved