login
A052968
a(n) = 1 + 2^(n-1) + n for n > 0, a(0) = 2.
8
2, 3, 5, 8, 13, 22, 39, 72, 137, 266, 523, 1036, 2061, 4110, 8207, 16400, 32785, 65554, 131091, 262164, 524309, 1048598, 2097175, 4194328, 8388633, 16777242, 33554459, 67108892, 134217757, 268435486, 536870943, 1073741856, 2147483681
OFFSET
0,1
COMMENTS
O. M. Cain proves that the number of consecutive zeros in the decimal expansion of 5^(n+2^n+2), that is 5^a(n+1), is nondecreasing and grows to infinity as m gets bigger. See link. - Michel Marcus, Nov 07 2019
LINKS
O. M. Cain, The Exceptional Selfcondensability of Powers of Five, arXiv:1910.13829 [math.HO], 2019. See Theorem 10.4. p. 13.
FORMULA
G.f.: (-2 + 5*x - 3*x^2 + x^3)/(-1+2*x)/(-1+x)^2
Recurrence: {a(3)=8, a(2)=5, a(1)=3, a(0)=2, 2*a(n)-a(n+1)-n=0}.
MAPLE
spec := [S, {S=Union(Sequence(Prod(Sequence(Z), Z)), Prod(Sequence(Z), Sequence(Z)))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);
MATHEMATICA
CoefficientList[Series[(-2+5*x-3*x^2+x^3)/(-1+2*x)/(-1+x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 22 2012 *)
Join[{2}, Table[1+2^(n-1)+n, {n, 40}]] (* or *) LinearRecurrence[{4, -5, 2}, {2, 3, 5, 8}, 40] (* Harvey P. Dale, Feb 10 2018 *)
PROG
(Magma) I:=[2, 3, 5, 8]; [n le 4 select I[n] else 4*Self(n-1)-5*Self(n-2)+2*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 22 2012
CROSSREFS
Sequence in context: A325473 A213710 A288382 * A206720 A018067 A068202
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 05 2000
STATUS
approved