login
A091051
Sum of divisors of n that are perfect powers.
5
1, 1, 1, 5, 1, 1, 1, 13, 10, 1, 1, 5, 1, 1, 1, 29, 1, 10, 1, 5, 1, 1, 1, 13, 26, 1, 37, 5, 1, 1, 1, 61, 1, 1, 1, 50, 1, 1, 1, 13, 1, 1, 1, 5, 10, 1, 1, 29, 50, 26, 1, 5, 1, 37, 1, 13, 1, 1, 1, 5, 1, 1, 10, 125, 1, 1, 1, 5, 1, 1, 1, 58, 1, 1, 26, 5, 1, 1, 1, 29, 118, 1, 1, 5, 1, 1, 1, 13, 1, 10
OFFSET
1,4
COMMENTS
a(n) = 1 iff n is squarefree: a(A005117(n))=1, a(A013929(n))>1;
a(p^k) = 1+(p^2)*(p^(k-1)-1)/(p-1) for p prime, k>0.
a(A000961(n)) = A086455(n)-A025473(n).
LINKS
Eric Weisstein's World of Mathematics, Perfect Power
Eric Weisstein's World of Mathematics, Divisor Function
FORMULA
G.f.: Sum_{k=i^j, i>=1, j>=2, excluding duplicates} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Mar 20 2017
EXAMPLE
Divisors of n=108: {1,2,3,4,6,9,12,18,27,36,54,108}, a(108) = 1^2 + 2^2 + 3^2 + 3^3 + 6^2 = 1+4+9+27+36 = 77.
MATHEMATICA
a[n_] := DivisorSum[n, #*Boole[# == 1 || GCD @@ FactorInteger[#][[All, 2]] > 1]&]; Array[a, 90] (* Jean-François Alcover, May 09 2017 *)
PROG
(PARI) a(n) = sumdiv(n, d, d*((d==1) || ispower(d))); \\ Michel Marcus, Oct 02 2014
CROSSREFS
Differs from A183097 for the first time at n=72.
Sequence in context: A145295 A366990 A360722 * A183097 A353958 A285486
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Dec 15 2003
STATUS
approved