login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091051 Sum of divisors of n that are perfect powers. 5

%I

%S 1,1,1,5,1,1,1,13,10,1,1,5,1,1,1,29,1,10,1,5,1,1,1,13,26,1,37,5,1,1,1,

%T 61,1,1,1,50,1,1,1,13,1,1,1,5,10,1,1,29,50,26,1,5,1,37,1,13,1,1,1,5,1,

%U 1,10,125,1,1,1,5,1,1,1,58,1,1,26,5,1,1,1,29,118,1,1,5,1,1,1,13,1,10

%N Sum of divisors of n that are perfect powers.

%C a(n) = 1 iff n is squarefree: a(A005117(n))=1, a(A013929(n))>1;

%C a(p^k) = 1+(p^2)*(p^(k-1)-1)/(p-1) for p prime, k>0.

%C a(A000961(n)) = A086455(n)-A025473(n).

%H Antti Karttunen, <a href="/A091051/b091051.txt">Table of n, a(n) for n = 1..16385</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PerfectPower.html">Perfect Power</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DivisorFunction.html">Divisor Function</a>

%H <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a>

%F G.f.: Sum_{k=i^j, i>=1, j>=2, excluding duplicates} k*x^k/(1 - x^k). - _Ilya Gutkovskiy_, Mar 20 2017

%e Divisors of n=108: {1,2,3,4,6,9,12,18,27,36,54,108}, a(108) = 1^2 + 2^2 + 3^2 + 3^3 + 6^2 = 1+4+9+27+36 = 77.

%t a[n_] := DivisorSum[n, #*Boole[# == 1 || GCD @@ FactorInteger[#][[All, 2]] > 1]&]; Array[a, 90] (* _Jean-Fran├žois Alcover_, May 09 2017 *)

%o (PARI) a(n) = sumdiv(n, d, d*((d==1) || ispower(d))); \\ _Michel Marcus_, Oct 02 2014

%Y Cf. A091050, A001597, A000203, A183104.

%Y Differs from A183097 for the first time at n=72.

%K nonn

%O 1,4

%A _Reinhard Zumkeller_, Dec 15 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 22 08:29 EDT 2019. Contains 325216 sequences. (Running on oeis4.)