This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A183104 a(n) = product of divisors of n that are perfect powers. 4
 1, 1, 1, 4, 1, 1, 1, 32, 9, 1, 1, 4, 1, 1, 1, 512, 1, 9, 1, 4, 1, 1, 1, 32, 25, 1, 243, 4, 1, 1, 1, 16384, 1, 1, 1, 1296, 1, 1, 1, 32, 1, 1, 1, 4, 9, 1, 1, 512, 49, 25, 1, 4, 1, 243, 1, 32, 1, 1, 1, 4, 1, 1, 9, 1048576, 1, 1, 1, 4, 1, 1, 1, 10368 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Sequence is not the same as A183102: a(72) = 10368, A183102(72) = 746496. Not multiplicative, as a(4)*a(9) <> a(36). - R. J. Mathar, Jun 07 2011 LINKS Antti Karttunen, Table of n, a(n) for n = 1..16385 FORMULA a(n) = A007955(n) / A183105(n). a(1) = 1, a(p) = 1, a(pq) = 1, a(pq...z) = 1, a(p^k) = p^((1/2*k*(k+1))-1), for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z. EXAMPLE For n = 12, set of such divisors is {1, 4}; a(12) = 1*4 = 4. MAPLE isA001597 := proc(n) local e ; e := seq(op(2, p), p=ifactors(n)[2]) ; return ( igcd(e) >=2 ) ; end proc: A183104 := proc(n) local a, d; a := 1 ; for d in numtheory[divisors](n) do if isA001597(d) then a := a*d; end if; end do; a ; end proc: seq(A183104(n), n=1..72) ; # R. J. Mathar, Jun 07 2011 PROG (PARI) A183104(n) = { my(m=1); fordiv(n, d, if(ispower(d), m *= d)); m; }; \\ Antti Karttunen, Oct 07 2017 CROSSREFS Cf. A001597, A007955, A091051, A183102, A183105. Sequence in context: A203639 A265679 A112622 * A183102 A178649 A119591 Adjacent sequences:  A183101 A183102 A183103 * A183105 A183106 A183107 KEYWORD nonn AUTHOR Jaroslav Krizek, Dec 25 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 14:06 EDT 2019. Contains 328017 sequences. (Running on oeis4.)