login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090888 Matrix defined by a(n,k) = 3^n*Fibonacci(k) - 2^n*Fibonacci(k-2), read by antidiagonals. 11
1, 2, 0, 4, 1, 1, 8, 5, 3, 1, 16, 19, 9, 4, 2, 32, 65, 27, 14, 7, 3, 64, 211, 81, 46, 23, 11, 5, 128, 665, 243, 146, 73, 37, 18, 8, 256, 2059, 729, 454, 227, 119, 60, 29, 13, 512, 6305, 2187, 1394, 697, 373, 192, 97, 47, 21, 1024, 19171, 6561, 4246, 2123, 1151, 600, 311 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(0,k) = A000045(k-1); a(1,k) = A000032(k); a(2,k) = A000285(k+1).

a(n,1) = a(n-1,1) + a(n-1,3) for n > 0; a(n,1) = A001047(n) = 2^(2n) - A083324(n); a(n,2) = A000244(n) = 2^(2n) - A005061(n); a(n,3) = 2a(n-1,4) for n > 0; a(n,3) = A027649(n); a(n,4) = A083313(n+1); a(n,5) = A084171(n+1).

Sum[a(n-k,k), {k,0,n}] = A098703(n+1), antidiagonal sums.

Let R, S and T be binary relations on the power set P(A) of a set A having n = |A| elements such that for every element x, y of P(A), xRy if x is a subset of y or y is a subset of x, xSy if x is a subset of y and xTy if x is a proper subset of y. Then a(n,3) = |R|, a(n,2) = |S| and a(n,1) = |T|. Note that a binary relation W on P(A) can be defined also such that for every element x, y of P(A) xWy if x is a proper subset of y and there are no z in P(A) such that x is a proper subset of z and z is a proper subset of y. A090802(n,1) = |W|. Also, a(n,0) = |P(A)|.

LINKS

Michael De Vlieger, Table of n, a(n) for n = 0..10000

Ross La Haye, Binary relations on the power set of an n-element set, JIS 12 (2009) 09.2.6, table 4.

Eric Weisstein, Fibonacci Number

Eric Weisstein, Lucas Number

FORMULA

a(n, k) = 3^n*Fibonacci(k) - 2^n*Fibonacci(k-2).

a(n, 0) = 2^n, a(n, 1) = 3^n - 2^n, a(n, k) = a(n, k-1) + a(n, k-2) for k > 1.

a(0, k) = Fibonacci(k-1), a(1, k) = Lucas(k), a(n, k) = 5a(n-1, k) - 6a(n-2, k) for n > 1.

O.g.f. (by rows) = (-2^n + (2^(n+1) - 3^n)x)/(-1+x+x^2). - Ross La Haye, Mar 30 2006

a(n,1) - a(n,0) = A003063(n+1). - Ross La Haye, Jun 22 2007

Binomial transform (by columns) of A118654. - Ross La Haye, Jun 22 2007

EXAMPLE

   1    0    1    1    2    3    5    8    13    21    34

   2    1    3    4    7   11   18   29    47    76   123

   4    5    9   14   23   37   60   97   157   254   411

   8   19   27   46   73  119  192  311   503   814  1317

  16   65   81  146  227  373  600  973  1573  2546  4119

  32  211  243  454  697 1151 1848 2999  4847  7846 12693

  64  665  729 1394 2123 3517 5640 9157 14797 23954 38751

a(5,3) = 454 because Fibonacci(3) = 2, Fibonacci(1) = 1 and (2 * 3^5) - (1 * 2^5) = 454.

MATHEMATICA

Table[3^(n - k) Fibonacci@ k - 2^(n - k) Fibonacci[k - 2], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Nov 28 2015 *)

CROSSREFS

Sequence in context: A291929 A188448 A264379 * A154794 A177264 A020781

Adjacent sequences:  A090885 A090886 A090887 * A090889 A090890 A090891

KEYWORD

nonn,tabl

AUTHOR

Ross La Haye, Feb 12 2004; revised Sep 24 2004, Sep 10 2005

EXTENSIONS

More terms from Ray Chandler, Oct 27 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified January 22 08:45 EST 2018. Contains 298042 sequences.