login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098703 a(n) = (3^n + phi^(n-1) + (-phi)^(1-n)) / 5, where phi denotes the golden ratio A001622. 5
0, 1, 2, 6, 17, 50, 148, 441, 1318, 3946, 11825, 35454, 106328, 318929, 956698, 2869950, 8609617, 25828474, 77484812, 232453449, 697358750, 2092073666, 6276216817, 18828643686, 56485920112, 169457742625, 508373199218, 1525119551286 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Sums of antidiagonals of A090888;

Partial sums of A099159;

a(n) = A000045(n) + A094688(n-1);

for n > 2, a(n) = 3a(n-1) - A000045(n-3);

for n > 3, a(n) = 3^2a(n-2) - A000285(n-4);

for n > 4, a(n) = 3^3a(n-3) - A022383(n-5);

lim_{n -> inf} a(n) / a(n-1) = 3.

a(n) = A101220(1,3,n). - Ross La Haye, Dec 15 2004

Form an array with m(0,n) = A000045(n), the Fibonacci numbers, and m(i,j) = Sum_{k<i} m(k,j) + Sum_{k<j} m(i,k), which is the sum of the terms above m(i,j) plus the sum of the terms to the left of m(i,j). The sum of the terms in antidiagonal(n) = a(n+1). - J. M. Bergot, May 27 2013

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Eric Weisstein, Golden Ratio

Eric Weisstein, Lucas Number

Eric Weisstein, Fibonacci Number

Index entries for linear recurrences with constant coefficients, signature (4,-2,-3).

FORMULA

a(n) = (((1 + sqrt(5))^n - (1 - sqrt(5))^n) / (2^n*sqrt(5))) + ((3^n - (((1 + sqrt(5)) / 2)^(n+1) + ((1 - sqrt(5)) / 2)^(n+1))) / 5); a(n) = (3^n + (((1 + sqrt(5)) / 2)^(n-1) + ((1 - sqrt(5)) / 2)^(n-1))) / 5.

Let Luc(n) denote the n-th Lucas number [A000032] and Fib(n) denote the n-th Fibonacci number [A000045]. Then a(n) = (3^n + Luc(n-1)) / 5; a(n) = Fib(n) + ((3^n - Luc(n+1)) / 5); a(n) = (3^n + Fib(n) + Fib(n-2)) / 5; a(n) = (3^n + 4Fib(n) - Fib(n+2)) / 5; a(n) = Sum_{k=0...n-1} Fib(k)*3^(n-k-1) - Fib(k-2)*2^(n-k-1), ... and so on.

a(n) = 4a(n-1) - 2a(n-2) - 3a(n-3).

Binomial transform of unsigned A084178. Binomial transform of signed A084178 gives the Fibonacci oblongs [A001654]. - Ross La Haye, Dec 21 2004

G.f.: x(1-2x)/((-1+3x)(-1+x+x^2)). - Ross La Haye, Aug 09 2005

a(0) = 0, a(1) = 1, a(n) = a(n-1) + a(n-2) + 3^(n-2) for n > 1. - Ross La Haye, Aug 20 2005

Binomial transform of A052964 beginning 0,1,0,3,1,10,... - Ross La Haye, May 31 2006

EXAMPLE

a(2) = 2 because 3^2 = 9, Luc(1) = 1 and (9 + 1) / 5 = 2.

MATHEMATICA

f[n_] := (3^n + Fibonacci[n] + Fibonacci[n - 2])/5; Table[ f[n], {n, 0, 27}] (* Robert G. Wilson v, Nov 04 2004 *)

LinearRecurrence[{4, -2, -3}, {0, 1, 2}, 30] (* Jean-François Alcover, Feb 17 2018 *)

PROG

(MAGMA) I:=[0, 1, 2]; [n le 3 select I[n] else 4*Self(n-1)-2*Self(n-2)-3*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 18 2018

CROSSREFS

Cf. A001622, A000032, A000045, A090888, A099159, A094688, A000285, A022383, A000244.

Sequence in context: A173993 A270863 A027914 * A025272 A148447 A148448

Adjacent sequences:  A098700 A098701 A098702 * A098704 A098705 A098706

KEYWORD

nonn

AUTHOR

Ross La Haye, Oct 27 2004

EXTENSIONS

More terms from Robert G. Wilson v, Nov 04 2004

More terms from Ross La Haye, Dec 21 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 04:12 EDT 2018. Contains 316405 sequences. (Running on oeis4.)