This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A083313 a(0)=1 and a(n) = 3^n - 2^(n-1) for n>=1. 9
 1, 2, 7, 23, 73, 227, 697, 2123, 6433, 19427, 58537, 176123, 529393, 1590227, 4774777, 14332523, 43013953, 129074627, 387289417, 1161999323, 3486260113, 10459304627, 31378962457, 94138984523, 282421147873, 847271832227 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Essentially the same as A064686. Binomial transform of A051049. LINKS Index entries for linear recurrences with constant coefficients, signature (5,-6). FORMULA a(n) = (2*3^n-(2^n-0^n))/2. a(0) = 1, a(n) = 3^n-2^(n-1) for n>=1. G.f.: ((1-x)+(1-2*x)*(1-3*x))/(2*(1-2*x)*(1-3*x)). E.g.f.: (2*exp(3*x)-exp(2*x)+exp(0))/2. a(n) = A090888(n-1, 4), for n > 0. - Ross La Haye, Sep 21 2004 Let b(n)=2*(3/2)^n-1. Then A003063(n)=-b(1-n)*3^(n-1) for n>0. a(n)=A064686(n)=b(n)*2^(n-1) for n>0. - Michael Somos, Aug 06 2006 From Alex Ratushnyak, Jul 03 2012: (Start) a(n) % 100 = 23  for n = 4*k-1, k>=1. a(n) % 100 = 27  for n = 4*k+1, k>=1. (End) MAPLE A083313 := proc(n)     if n = 0 then         1;     else         3^n-2^(n-1) ;     end if; end proc: # R. J. Mathar, Aug 01 2013 MATHEMATICA CoefficientList[Series[((1 - x) + (1 - 2 x) (1 - 3 x)) / (2 (1 - 2 x) (1 - 3 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 01 2015 *) LinearRecurrence[{5, -6}, {1, 2, 7}, 30] (* Harvey P. Dale, Sep 04 2017 *) PROG (PARI) Vec(((1-x)+(1-2*x)*(1-3*x))/(2*(1-2*x)*(1-3*x)) + O(x^30)) \\ Michel Marcus, Jan 31 2015 (MAGMA) [(2*3^n-2^n+0^n)/2: n in [0..30]]; // Vincenzo Librandi, Feb 01 2015 CROSSREFS Cf. A083314. Sequence in context: A192906 A217664 A064686 * A077832 A030282 A291015 Adjacent sequences:  A083310 A083311 A083312 * A083314 A083315 A083316 KEYWORD easy,nonn AUTHOR Paul Barry, Apr 24 2003 EXTENSIONS Better name by Alex Ratushnyak, Jul 02 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 21:09 EDT 2018. Contains 316505 sequences. (Running on oeis4.)