OFFSET
1,1
COMMENTS
The sorted k-gonal numbers of order greater than 2. If one were to include either the rank 2 or the 2-gonal numbers, then every number would appear.
Number of terms less than or equal to 10^k for k = 1,2,3,...: 3, 57, 622, 6357, 63889, 639946, 6402325, 64032121, 640349979, 6403587409, 64036148166, 640362343980, ..., . - Robert G. Wilson v, May 29 2014
The n-th k-gonal number is 1 + k*n(n-1)/2 - (n-1)^2 = A057145(k,n).
For all squares (A001248) of primes p >= 5 at least one a(n) exists with p^2 = a(n) + 1. Thus the subset P_s(3) of rank 3 only is sufficient. Proof: For p >= 5, p^2 == 1 (mod {3,4,6,8,12,24}) and also P_s(3) + 1 = 3*s - 2 == 1 (mod 3). Thus the set {p^2} is a subset of {P_s(3) + 1}; Q.E.D. - Ralf Steiner, Jul 15 2018
For all primes p > 5, at least one polygonal number exists with P_s(k) + 1 = p when k = 3 or 4, dependent on p mod 6. - Ralf Steiner, Jul 16 2018
Numbers m such that r = (2*m/d - 2)/(d - 1) is an integer for some d, where 2 < d < m is a divisor of 2*m. If r is an integer, then m is the d-th (r+2)-gonal number. - Jianing Song, Mar 14 2021
REFERENCES
Albert H. Beiler, Recreations In The Theory Of Numbers, The Queen Of Mathematics Entertains, Dover, NY, 1964, pp. 185-199.
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..10000 (first 1000 terms are from T. D. Noe)
Eric Weisstein's World of Mathematics, Figurate Number
FORMULA
Integer k is in this sequence iff A176774(k) < k. - Max Alekseyev, Apr 24 2018
MAPLE
isA090466 := proc(n)
local nsearch, ksearch;
for nsearch from 3 do
if A057145(nsearch, 3) > n then
return false;
end if;
for ksearch from 3 do
if A057145(nsearch, ksearch) = n then
return true;
elif A057145(nsearch, ksearch) > n then
break;
end if;
end do:
end do:
end proc:
for n from 1 to 1000 do
if isA090466(n) then
printf("%d, ", n) ;
end if;
end do: # R. J. Mathar, Jul 28 2016
MATHEMATICA
Take[Union[Flatten[Table[1+k*n (n-1)/2-(n-1)^2, {n, 3, 100}, {k, 3, 40}]]], 67] (* corrected by Ant King, Sep 19 2011 *)
mx = 150; n = k = 3; lst = {}; While[n < Floor[mx/3]+2, a = PolygonalNumber[n, k]; If[a < mx+1, AppendTo[ lst, a], (n++; k = 2)]; k++]; lst = Union@ lst (* Robert G. Wilson v, May 29 2014 and updated Jul 23 2018; PolygonalNumber requires version 10.4 or higher *)
PROG
(PARI) list(lim)=my(v=List()); lim\=1; for(n=3, sqrtint(8*lim+1)\2, for(k=3, 2*(lim-2*n+n^2)\n\(n-1), listput(v, 1+k*n*(n-1)/2-(n-1)^2))); Set(v); \\ Charles R Greathouse IV, Jan 19 2017
(PARI) is(n)=for(s=3, n\3+1, ispolygonal(n, s)&&return(s)); \\ M. F. Hasler, Jan 19 2017
(PARI) isA090466(m) = my(v=divisors(2*m)); for(i=3, #v, my(d=v[i]); if(d==m, return(0)); if((2*m/d - 2)%(d - 1)==0, return(1))); 0 \\ Jianing Song, Mar 14 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Robert G. Wilson v, Dec 01 2003
EXTENSIONS
Verified by Don Reble, Mar 12 2006
STATUS
approved