login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089810
Expansion of Jacobi theta function theta_3(Pi/6, q) in powers of q.
6
1, 1, 0, 0, -1, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0
OFFSET
0,10
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
This is an example of the quintuple product identity in the form f(a*b^4, a^2/b) - (a/b) * f(a^4*b, b^2/a) = f(-a*b, -a^2*b^2) * f(-a/b, -b^2) / f(a, b) where a = -x^5, b = -x. - Michael Somos, Jul 12 2012
Convolution square is A258279. - Michael Somos, May 25 2015
Number 8 of the 14 primitive eta-products which are holomorphic modular forms of weight 1/2 listed by D. Zagier on page 30 of "The 1-2-3 of Modular Forms". - Michael Somos, May 04 2016
LINKS
Eric Weisstein's World of Mathematics, Jacobi Theta Functions.
Eric Weisstein's World of Mathematics, Quintuple Product Identity.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of Jacobi theta function (3theta_4(q^9) - theta_4(q)) / 2 in powers of q.
a(n) is multiplicative with a(0)=1, a(2^e) = -(1 + (-1)^e)/2, if e>0, a(3^e) = -2(1 + (-1)^e)/2 if e>0, a(p^e) = (1 + (-1)^e)/2 otherwise.
From Michael Somos, Nov 05 2005: (Start)
Euler transform of period 6 sequence [ 1, -1, 0, -1, 1, -1, ...].
G.f.: (Sum_{k in Z} 3 * (-x)^((3*k)^2) - (-x)^(k^2)) / 2 = Product_{k>0} (1 - x^(2*k)) / ((1 - x^(6*k - 1)) * (1 - x^(6*k-5))).
Expansion of eta(q^2)^2 * eta(q^3) / (eta(q) * eta(q^6)) in powers of q. (End)
Expansion of psi(q) * chi(-q^3) in powers of q where psi(), chi() are Ramanujan theta functions. - Michael Somos, Sep 16 2007
Expansion of (3 * phi(-q^9) - phi(-q)) / 2 in powers of q where phi() is a Ramanujan theta function.
From Michael Somos, Sep 17 2007: (Start)
Expansion of Jacobi theta function theta_3(Pi/6, q) in powers of q.
Expansion of f(x*w, x/w) in powers of x where w is a primitive sixth root of unity and f() is Ramanujan's two-variable theta function. (End)
From Michael Somos, Jan 26 2008: (Start)
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 72^(1/2) (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A080995.
G.f.: Product_{k>0} (1 - x^(2*k)) / (1 - x^k + x^(2*k)). (End)
a(3*n + 2) = a(4*n + 2) = a(4*n + 3) = a(5*n + 2) = a(5*n + 3) = a(8*n + 5) = a(9*n + 3) = a(9*n + 6) = 0. a(3*n + 1) = A089802(n). a(4*n) = A089807(n). a(9*n) = A002448(n).
a(n) = (floor(sqrt(n))-floor(sqrt(n-1)))*(abs(2-4*sin((floor(sqrt(n))+1)*Pi/3)^2) - 4*sin((floor(sqrt(n))+2)*Pi/3)^2)*(-1)^floor(floor(sqrt(n)-1)/3). - Mikael Aaltonen, Jan 17 2015
From Michael Somos, May 25 2015: (Start)
a(n) = (-1)^n * A089807(n) = A204843(4*n) = A204853(4*n).
a(8*n + 1) = A089812(n). a(12*n + 4) = - A089801(n). (End)
Sum_{k=1..n} abs(a(k)) ~ (4/3)*sqrt(n). - Amiram Eldar, Jan 27 2024
EXAMPLE
G.f. = 1 + q - q^4 - 2*q^9 - q^16 + q^25 + 2*q^36 + q^49 - q^64 - 2*q^81 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, Pi/6, q], {q, 0, n}]; (* Michael Somos, Nov 14 2011 *)
a[ n_] := SeriesCoefficient[ (3 EllipticTheta[ 4, 0, q^9] - EllipticTheta[ 4, 0, q]) /2, {q, 0, n}]; (* Michael Somos, Nov 14 2011 *)
QP = QPochhammer; s = QP[q^2]^2*(QP[q^3] / (QP[q]*QP[q^6])) + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 09 2015, adapted from PARI *)
PROG
(PARI) {a(n) = my(x); if( n<1, n==0, issquare(n, &x) * (1 + (n%3==0)) * (-1)^((1 + x) \ 3))}; /* Michael Somos, Nov 05 2005 */
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)), n))}; /* Michael Somos, Jan 26 2008 */
KEYWORD
sign,mult
AUTHOR
Eric W. Weisstein, Nov 12 2003
STATUS
approved