login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089813
Expansion of Jacobi theta function (theta_2(q) - 3*theta_2(q^9))/(2 q^(1/4)) in powers of q.
1
1, 0, -2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,3
COMMENTS
This is the sequence A089812 with interleaved zeros. - Michael Somos, Nov 21 2017
LINKS
Eric Weisstein's World of Mathematics, Jacobi Theta Functions
FORMULA
Euler transform of period 12 sequence [0, -2, 0, -1, 0, -1, 0, -1, 0, -2, 0, -1, ...]. - Michael Somos, Nov 21 2017
EXAMPLE
G.f. = 1 - 2*x^2 + x^6 + x^12 - 2*x^20 + x^30 + x^42 - 2*x^56 + x^72 + x^90 - 2*x^110 + ...
G.f. = q - 2*q^9 + q^25 + q^49 - 2*q^81 + q^121 + q^169 - 2*q^225 + q^289 + q^361 + ...
MATHEMATICA
A089813[n_] := SeriesCoefficient[(EllipticTheta[2, 0, q] - 3*EllipticTheta[2, 0, q^9])/(2 q^(1/4), {q, 0, n}]; Table[A089813[n], {n, 0, 50}] (* G. C. Greubel, Nov 20 2017 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ q^2]^2 QPochhammer[ q^12] / (QPochhammer[q ^4] QPochhammer[ q^6]), {q, 0, n}]; (* Michael Somos, Nov 21 2017 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^12 + A) / (eta(x^4 + A) * eta(x^6 + A)), n))}; /* Michael Somos, Nov 21 2017 */
(PARI) lista(nn) = {q='q+O('q^nn); Vec(eta(q^2)^2*eta(q^12)/(eta(q^4)*eta(q^6)))} \\ Altug Alkan, Mar 22 2018
CROSSREFS
Cf. A089812.
Sequence in context: A368073 A086071 A322212 * A343023 A337760 A037845
KEYWORD
sign
AUTHOR
Eric W. Weisstein, Nov 12 2003
STATUS
approved