OFFSET
0,1
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 10 of the 14 primitive eta-products which are holomorphic modular forms of weight 1/2 listed by D. Zagier on page 30 of "The 1-2-3 of Modular Forms". - Michael Somos, May 04 2016
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Eric Weisstein's World of Mathematics, Jacobi Theta Functions
I. J. Zucker, Further Relations Amongst Infinite Series and Products. II. The Evaluation of Three-Dimensional Lattice Sums, J. Phys. A: Math. Gen. 23, 117-132, 1990.
FORMULA
Expansion of q^(-1/3) * (eta(q) * eta(q^6)^2) / (eta(q^2) * eta(q^3)) in powers of q. - Michael Somos, Apr 12 2005
Expansion of chi(-x) * psi(x^3) in powers of x where psi(), chi() are Ramanujan theta functions. - Michael Somos, Dec 23 2011
Expansion of f(-x, -x^5) in powers of x, where f(, ) is Ramanujan's general theta function.
a(n) = b(3*n + 1) where b() is multiplicative with b(3^e) = 0^e, b(2^e) = - (1 + (-1)^e) / 2 if e>0, b(p^e) = (1 + (-1)^e) / 2 if p>3.
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 8^(1/2) (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A089812. - Michael Somos, Dec 23 2011
Euler transform of period 6 sequence [-1, 0, 0, 0, -1, -1, ...]. - Michael Somos, Apr 12 2005
abs(a(n)) is the characteristic function of A001082. - Michael Somos, Oct 31 2005
G.f.: Sum_{k in Z} (-1)^k * x^((3*k^2 - 2*k)) = Product_{k>0} (1 - x^(6*k)) * (1 - x^(6*k - 1)) * (1 - x^(6*k - 5)). - Michael Somos, Oct 31 2005
A002448(3*n + 1) = -2 * a(n). - Michael Somos, Jul 07 2006
a(n) = (-1)^n * A089801(n).
a(n) = -(1/n)*Sum_{k=1..n} A284362(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
EXAMPLE
G.f. = 1 - x - x^5 + x^8 + x^16 - x^21 - x^33 + x^40 + x^56 - x^65 - x^85 + ...
G.f. = q - q^4 - q^16 + q^25 + q^49 - q^64 - q^100 + q^121 + q^169 - q^196 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, x^3] - EllipticTheta[ 4, 0, x^(1/3)]) / (2 x^(1/3)), {x, 0, n}]; (* Michael Somos, Jun 30 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2] EllipticTheta[ 2, 0, x^(3/2)] / (2 x^(3/8)), {x, 0, n}]; (* Michael Somos, Jun 30 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2] QPochhammer[ -x^3, x^3] QPochhammer[ x^6], {x, 0, n}]; (* Michael Somos, Jun 30 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^6] QPochhammer[ x^5, x^6] QPochhammer[ x^6], {x, 0, n}]; (* Michael Somos, Jun 30 2015 *)
a[ n_] := (-1)^n Sign @ SquaresR[ 1, 3 n + 1]; (* Michael Somos, Jun 30 2015 *)
PROG
(PARI) {a(n) = (-1)^n * issquare(3*n + 1)}; /* Michael Somos, Apr 12 2005 */
CROSSREFS
KEYWORD
sign
AUTHOR
Eric W. Weisstein, Nov 12 2003
EXTENSIONS
Corrected by N. J. A. Sloane, Nov 05 2005
STATUS
approved