login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089800
Expansion of Jacobi theta function theta_2(q)/q^(1/4).
2
2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,1
LINKS
Eric Weisstein's World of Mathematics, Jacobi Theta Functions
FORMULA
For n > 0, a(n) = 2*(floor(sqrt(n+1/4)-1/2) - floor(sqrt(n-1+1/4)-1/2)). - Mikael Aaltonen, Jan 18 2015
a(n) = 2*(floor(sqrt(n+1)+1/2)-floor(sqrt(n)+1/2)). - Mikael Aaltonen, Jan 20 2015
a(n) = 2*A005369(n). - Michel Marcus, Jan 20 2015
MAPLE
A089800 := proc(n)
if issqr(1+4*n) then
if type( sqrt(1+4*n)-1, 'even') then
2;
else
0;
end if;
else
0;
end if;
end proc:
seq( A089800(n), n=0..40) ; # R. J. Mathar, Feb 22 2021
MATHEMATICA
a[n_] := SeriesCoefficient[ EllipticTheta[2, 0, q]/q^(1/4), {q, 0, n}]; Table[a[n], {n, 0, 101}] (* Jean-François Alcover, Nov 12 2012 *)
Table[2*(Floor[Sqrt[n+1]+1/2] - Floor[Sqrt[n]+1/2]), {n, 0, 50}] (* G. C. Greubel, Nov 20 2017 *)
PROG
(PARI) for(n=0, 50, print1(2*(floor(sqrt(n+1)+1/2) - floor(sqrt(n)+1/2)), ", ")) \\ G. C. Greubel, Nov 20 2017
(Magma) [2*(Floor(Sqrt(n+1)+1/2) - Floor(Sqrt(n)+1/2)): n in [0..50]]; // G. C. Greubel, Nov 20 2017
CROSSREFS
Sequence in context: A069517 A193526 A160498 * A079208 A262682 A318983
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Nov 12 2003
STATUS
approved