login
A089798
Expansion of Jacobi theta function theta_4(q^2).
2
1, 0, -2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Jacobi Theta Functions
FORMULA
For n > 0, a(n) = 2*(floor(sqrt(n/2)) - floor(sqrt((n-1)/2)))*(-1)^floor(sqrt(n/2)). - Mikael Aaltonen, Jan 18 2015
MATHEMATICA
a[n_] := SeriesCoefficient[ EllipticTheta[4, 0, q^2], {q, 0, n}]; Table[a[n], {n, 0, 101}] (* Jean-François Alcover, Nov 12 2012 *)
PROG
(PARI) for(n=0, 50, print1(if(n==0, 1, 2*(floor(sqrt(n/2)) - floor(sqrt((n-1)/2)))*(-1)^floor(sqrt(n/2))), ", ")) \\ G. C. Greubel, Nov 20 2017
CROSSREFS
Cf. A002448.
Sequence in context: A316897 A151756 A112053 * A070536 A318886 A369873
KEYWORD
sign
AUTHOR
Eric W. Weisstein, Nov 12 2003
STATUS
approved