login
A112053
a(n) = A112046(2n) - A112046(2n-1) = A112048(n) - A112047(n).
6
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,12
LINKS
FORMULA
a(n) = A112048(n)-A112047(n).
MATHEMATICA
a112046[n_]:=Block[{i=1}, While[JacobiSymbol[i, 2n + 1]==1, i++]; i]; Table[a112046[2n] - a112046[2n - 1] , {n, 101}] (* Indranil Ghosh, May 24 2017 *)
PROG
(Python)
from sympy import jacobi_symbol as J
def a112046(n):
i=1
while True:
if J(i, 2*n + 1)!=1: return i
else: i+=1
def a(n): return a112046(2*n) - a112046(2*n - 1)
print([a(n) for n in range(1, 102)]) # Indranil Ghosh, May 24 2017
CROSSREFS
Indices where a(n) is not zero: A112054. Values at those points: A112059.
Sequence in context: A316893 A316897 A151756 * A089798 A070536 A318886
KEYWORD
sign
AUTHOR
Antti Karttunen, Aug 27 2005
STATUS
approved